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Actor concurrency is becoming increasingly important in the development of real-world software systems.
Although actor concurrency may be less susceptible to some multithreaded concurrency bugs, such as low-
level data races and deadlocks, it comes with its own bugs that may be different. However, the fundamental
characteristics of actor concurrency bugs, including their symptoms, root causes, API usages, examples, and
differences when they come from different sources are still largely unknown. Actor software development can
significantly benefit from a comprehensive qualitative and quantitative understanding of these characteristics,
which is the focus of this work, to foster better API documentation, development practices, testing, debugging,
repairing, and verification frameworks. To conduct this study, we take the following major steps. First, we
construct a set of 186 real-world Akka actor bugs from Stack Overflow and GitHub via manual analysis of
3,924 Stack Overflow questions, answers, and comments and 3,315 GitHub commits, messages, original and
modified code snippets, issues, and pull requests. Second, we manually study these actor bugs and their fixes
to understand and classify their symptoms, root causes, and API usages. Third, we study the differences
between the commonalities and distributions of symptoms, root causes, and API usages of our Stack Overflow
and GitHub actor bugs. Fourth, we discuss real-world examples of our actor bugs with these symptoms and
root causes. Finally, we investigate the relation of our findings with those of previous work and discuss
their implications. A few findings of our study are: @ symptoms of our actor bugs can be classified into five
categories, with Error as the most common symptom and Incorrect Exceptions as the least common, @ root
causes of our actor bugs can be classified into ten categories, with Logic as the most common root cause and
Untyped Communication as the least common, ® a small number of Akka API packages are responsible for
most of API usages by our actor bugs, and @ our Stack Overflow and GitHub actor bugs can differ significantly
in commonalities and distributions of their symptoms, root causes, and API usages. While some of our findings
agree with those of previous work, others sharply contrast.
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1 INTRODUCTION

Actor concurrency is becoming increasingly important in the development of real-world software
systems, which are built using industrial-strength actor programming frameworks and languages,
such as Akka [Lightbend 2019a], Orleans [Bernstein et al. 2014], and Erlang [Armstrong 2007].
For example, Akka actors allow PayPal to serve more than a billion financial transactions per day
[Lightbend 2020d], the Spark big data ecosystem to shuffle hundreds of terabytes of data [Apache
2015], and Groupon to provide real-time personalized coupons to 48 million customers [Lightbend
2020c]. Twitter, LinkedIn, HP, Samsung, Walmart, Verizon, CapitalOne, and Weight Watchers are
among other users of Akka actor concurrency [Lightbend 2019b]. Unlike multithreaded concurrency,
in which threads communicate using shared memory and locks, in actor concurrency, actors
communicate using asynchronous message [Agha 1986; Agha and Hewitt 1985]. The use of higher-
level actors and messages—instead of lower-level threads and locks—makes actor concurrency less
susceptible to some of the standard bugs in multithreaded concurrency, such as low-level data races
and deadlocks [Lee 2006]. However, actor concurrency comes with its own bugs that are different
from multithreaded concurrency bugs.

There is previous work on the classification of actor bugs [Hedden and Zhao 2018; Torres Lopez
et al. 2018], as well as testing [Li et al. 2018; Sen and Agha 2006], debugging [Caballero et al.
2019; Li et al. 2014; Lopez et al. 2019; Torres Lopez et al. 2017], and verification [Bagherzadeh and
Rajan 2015, 2017; Charalambides et al. 2019; Clebsch et al. 2015; Colago et al. 1997; D’Osualdo et al.
2013; Gordon 2019; Haller and Loiko 2016; Lauterburg et al. 2009; Negara et al. 2011; Rajan 2015;
Stiévenart et al. 2017; Tasharofi et al. 2012; Tasharofi et al. 2013] of actor software. Although this
work advances our knowledge of actor bugs, the fundamental characteristics of actor concurrency
bugs, including their symptoms, root causes, API usages, examples, and differences when they come
from different sources are still largely unknown. Actor software development can significantly
benefit from a comprehensive quantitative and qualitative understanding of these characteristics of
actor bugs to foster better API documentation, development practices, testing, debugging, repairing,
and verification frameworks. For example, static bug mitigation tools tend to focus on bugs that are
classified by their root causes and can use actor bugs root causes and their classification [Hanam
et al. 2016]. The same is true for dynamic bug mitigation tools that target bugs that are classified
by their symptoms. Symptoms, root causes, and fixes are the main criteria for defining bug classes
that bug mitigation tools target [Ball et al. 2003; Monperrus 2014]. In this work, we present the
first comprehensive study on these characteristic of real-world actor concurrency bugs in Akka
and answer the following research questions:

e RQ1: Symptoms of actor concurrency bugs in Akka What are the symptoms of real-world
Akka actor bugs and their classification? What are the real-world examples of actor bugs
with these symptoms? How common are these symptoms?

e RQ2: Root causes of actor concurrency bugs in Akka What are the root causes of Akka
actor bugs and their classification? What are the real-world examples of actor bugs with
these root causes? How common are these root causes?

e RQ3: API usages of actor concurrency bugs in Akka What APIs do Akka actor bugs use?
How common are these APIs?

e RQ4: Differences of actor concurrency bugs in Akka How different are the symptoms,
root causes, and API usages for Akka actor bugs in Stack Overflow and GitHub? How different
are their commonalities? How different are their distributions?

We conduct our study on Akka actor bugs that we construct using Stack Overflow and GitHub.
Stack Overflow is the most common question & answer website, with more than 18 million questions,
28 million answers, 72 million comments, and 4 million developer participants [Stack Exchange
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2019]. Akka actor bugs in Stack Overflow give us insight about bugs for which developers may ask
questions and receive help in fixing. Similarly, GitHub is the most common code repository for
open-source software, with more than 100 million projects, 900 million commits, and 40 million
developers [GHTorrent 2020; GitHub 2019; Khari Johnson 2018]. Akka actor bugs in GitHub give us
insight about bugs that developers leave in their code and later find and fix. We focus on Akka as it
is growing faster than other popular industrial-strength actor frameworks and languages, such as
Orleans [Bernstein et al. 2014] and Erlang [Armstrong 2007]. For the past five years, there are 7,291
Akka questions in Stack Overflow, 1.6 and 48 times more than 4,544 and 152 Erlang and Orleans
questions, respectively. Similarly, there are 14,098 Akka projects in GitHub, 1.2 and 10.6 times more
than 11,312 and 1,325 Erlang and Orleans projects, respectively.

To conduct this study, we take the following major steps. First, we construct a set of 186 real-
world Akka actor from Stack Overflow and GitHub via manual analysis of 3,924 Stack Overflow
questions, answers, and comments and 3,315 GitHub commits, messages, original and modified
code snippets, issues, and pull requests. Second, we manually study these actor bugs and their
fixes to understand and classify their symptoms, root causes, and API usages. Third, we study the
differences between the commonalities and distributions of symptoms, root causes, and API usages
of our actor bugs in Stack Overflow and GitHub. Fourth, we discuss real-world examples of actor
bugs with these symptoms and root causes. Finally, we investigate the relation of our findings with
previous work and discuss their implications.

A few findings of our study are: @ symptoms of our actor bugs can be classified into five categories
Error, Unexpected Behavior, Incorrect Messaging, Incorrect Termination, and Incorrect Exceptions,
where Error is the most common symptom (36.1%) and Incorrect Exceptions is the least common
(2.2%), @ root causes of our actor bugs can be classified into 10 categories Logic, Race, API Confusion,
Explicit Life Cycle, Programming, Messaging Patterns, Model Confusion, Misnaming, Misconfiguration,
and Untyped Communication, where Logic is the most common root cause (19.4%) and Untyped
Communication and is least common (1.1%), ® a small number of Akka API packages (2.7%) are
responsible for most of API usages (97.7%) by our actor bugs, and @ our Stack Overflow and GitHub
actor bugs can differ significantly in the commonality and distribution of their symptoms, root
causes, and API usages. While some of our findings agree with those of previous work, others
sharply contrast. For example, ® our finding that Logic is the most common root cause for our
actor bugs agrees with that of Hedden and Zhao [2018]. In contrast, ® our symptoms Incorrect
Messaging and Incorrect Exceptions, that are symptoms for 27.5% of our actor bugs, and our root
causes API Confusion, Model Confusion, Misnaming, Misconfiguration, and Untyped Communication,
that are root causes for 31.9% of our actor bugs, are new and cannot be found in previous work.
Finally, we show the implications of our findings, e.g., @ Akka bug finding tools and techniques
can be enhanced by our new symptoms and root causes.

All the data used in this study are publicly available at https://tinyurl.com/y4rkwhco under a
Creative Commons Attribution 4.0 International license.

2 METHODOLOGY

In this section, we discuss our methodology for the collection and analysis of our Akka actor bugs
from Stack Overflow and GitHub.

2.1 Data Collection

Akka actor bugs in Stack Overflow In Stack Overflow, an “asker” developer asks a question and
assigns one to five tags to the question to better specify its topic. “Answerer” developers provide
answers or comments for the question, and the asker selects one of these answers as the accepted
answer. Questions and answers may include code in their body. There are 18,947,469 questions,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 214. Publication date: November 2020.


https://tinyurl.com/y4rkwhco

214:4 Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi Khatchadourian

28,717,692 answers, and 72,782,793 comments in Stack Overflow [Stack Exchange 2019], as of
December 2019, that are asked and answered by 4,697,218 developer participants.

To identify Akka actor bugs in Stack Overflow, we take the following steps. First, we identify
1,001 Akka actor questions—those with tags [Akka] and [Actor]. Second, we identify 704 actor
coding questions—those that include code. Third, we manually analyze these 704 coding questions,
all their 926 answers, and 2,294 comments to identify actor bug questions and fix answers. In total,
we analyze 3,922 questions, answers, and comments. An actor coding question is considered to be
a “bug” question if its asker explicitly identifies a diversion from the expected behavior of its code.
The accepted answer for this bug question is considered to be a “bug fix” answer if its answerer
explicitly identifies a solution for the unexpected behavior of the code in the question. For this
manual analysis, the second and third authors individually analyze actor coding questions, answers,
and comments, and reiterate and refine until they agree on the set . of actor bug questions and
fix answers. The first and fourth authors individually analyze, reiterate and refine until they agree
and verify .. Our dataset . includes 130 Akka actor bugs and their fixes from Stack Overflow.

The first author is a Software Engineer and Programming Languages professor with extensive
expertise in both actor and multithreaded concurrent systems [Ahmed and Bagherzadeh 2018;
Bagherzadeh and Khatchadourian 2019; Bagherzadeh and Rajan 2015, 2017; Khatchadourian et al.
2018; Long et al. 2016]. The second and third authors are Ph.D. students with extensive coursework
in actor, multithreaded and cloud systems. The fourth author is a Software Engineer professor
with extensive expertise in parallel and streaming systems [Khatchadourian et al. 2019, 2020]. All
authors have several years of industrial work experience.

Our data collection steps are in line with the best practices of previous work. Previous work uses
Stack Overflow tags, coding questions, and manual analysis often to identify big data [Bagherzadeh
and Khatchadourian 2019], concurrency [Ahmed and Bagherzadeh 2018], security [Meng et al. 2018;
Yang et al. 2016], and deep learning [Islam et al. 2019, 2020] bugs and questions and answers. We
write our code to process Stack Exchange Data Dump [Stack Exchange 2019] and its XML files to
identify Akka actor and coding questions. Code snippets are marked with XML tags (code){(/code)
in the body of questions and answers. Stack Exchange Data Dump is publicly available and covers
a time span of over 11 years, from August 2008 to December 2019.

Akka actor bugs in GitHub In GitHub, a developer creates a repository to host a project and
saves changes to the project using commits. A commit includes a message that specifies its purpose
and changes to the original code. Another developer can open an issue to report a bug or ask for a
new feature or open a pull request to ask for the integration of their code changes into the project.
There are 83,624,114 projects, 930,401,807 commits and 67,442,279 issues in GitHub [GHTorrent
2020], as of April 2020, that are written by 24,154,883 developers.

To identify Akka actor bugs and fixes in GitHub, we take the following steps. First, we identify
10,832 Scala and Java Akka repositories—those with the keyword “Akka” in their names or descrip-
tions and main languages Scala or Java. We focus on Scala and Java because they are the most
common programming languages for Akka. There are 8,741 Scala and 2,498 Java Akka repositories
in comparison to 964 C# and 12 C++ Akka repositories. Second, we identify 121 mature Akka
repositories that have at least five stars and five contributors [Biswas et al. 2019; Gu et al. 2016;
Nadi et al. 2016] and code that includes the import statement import akka.actorx. An Akka project
must import the classes in the package akka.actor to work with actors. Third, we extract all 39,442
commits of Akka repositories and stem the words in their messages. Stemming reduces a word to its
base and allows for grouping and similar treatment of words with the same base. For example, the
words “fixing”, “fixes”, and “fixed” all stem from the base “fix”. Fourth, we identify 3,315 candidate
bug commits whose messages include keywords “error,” “bug,” “fix,” “issue,” “mistake,” “incorrect,”
“fault,” “defect,” and “flaw” [Casalnuovo et al. 2015; Kim and Whitehead 2006; Ray et al. 2016]. Fifth,
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we manually analyze these 3,315 commits, their messages, original and modified code snippets,
issues, and pull requests to identify actor bugs and fixes.

A GitHub commit is an actor “bug and fix” commit if its message, issues, or pull requests describe
a bug in its original code and describe a fix in its modified code where the modified code makes
changes to either Akka actor (sub)classes or usages of actor instances. For this manual analysis,
the second and third authors individually analyze commits, their messages, original and modified
code, pull requests, and issues and reiterate and refine until they agree on the set ¢4 of bug and fix
commits. The first and fourth authors individually analyze, reiterate and refine until they agree
and verify ¢.

Our dataset ¢ of Akka actor bugs includes 56 actor bug commits and their fixes from GitHub.
These bugs belong to 12 repositories for Gatling, Spray, PayPal/squbs, akka-persistence-mongo,
oracle/wookiee, NewMotion/akka-rabbitmq, kamon-io/kamon-akka, horta-hell, dn4s, amient/affin-
ity, gearpump, MessageClassifier, and akka-cluster-etcd projects. These projects cover a broad
spectrum of ranging from load testing to web service development to cloud-based messaging.

Our data collection steps are in line with the best practices of previous work. Previous work
uses keywords, maturity criteria, and manual analysis often to identify actor [Hedden and Zhao
2018] and non-actor bug and fix commits [Casalnuovo et al. 2015; Islam et al. 2019, 2020; Kim and
Whitehead 2006; Ray et al. 2016] in mature GitHub projects [Biswas et al. 2019; Gu et al. 2016; Nadi
et al. 2016]. We use Natural Language ToolKit stemming algorithm [NLTK Project 2020], GitHub
Search, GitHub Code Search, and its REST API during the steps above.

Akka actor bug dataset Our Akka actor bug dataset Z includes 186 bugs and their fixes, which
is the union of 130 Stack Overflow actor bugs in .¥ and 56 GitHub actor bugs in ¢. The scale of
our bug dataset is in line with those of previous work. For example, Hedden and Zhao [2018] study
126 Akka actor bugs selected from 12 projects, Torres Lopez et al. [2018] study 23 actor bugs from
11 literary works, and Zhang et al. [2018] study 87 Stack Overflow and 88 GitHub TensorFlow
deep learning bugs. We include both run-time and compile-time bugs in A. The characteristics
of these bugs are complementary, and the inclusion of both allows us to obtain a comprehensive
understanding of the characteristics of our actor bugs. 89.2% of our bugs occur during the execution
and 10.8% during the compilation. This inclusion is in line with the practices of previous work. For
example, Islam et al. [2019, 2020] include both run-time and compile-time bugs in their dataset of
deep learning bugs.

2.2 Data Analysis

RQ1 and RQ2: Symptoms and root causes To answer RQ1 and RQ2, we manually analyze each
actor bug and fix in 4. For a Stack Overflow bug and fix question and answer, we analyze the
question, including its text and code snippets, to identify and classify the symptom of the bug.
Similarly, we analyze all the answers of the question, including its accepted answer, and their
comments to identify the root cause of the bug. For a GitHub bug and fix commit, we analyze the
commit, its message, original code, and all its issues and pull requests to identify and classify the
symptom of the bug. Similarly, we analyze the commit, its message, original and modified code,
issues, and pull requests to identify the root cause of the bug. We use the open card sort [Fincher
and Tenenberg 2005] to classify symptoms and root causes. In the open card sort, there are no
predefined symptom and root cause categories; instead, the categories are developed during the
sorting process. During the sorting process, the first three authors individually assign categories to
and classify symptoms and root causes of actor bugs and reiterate and refine until they all agree.
Our data analysis steps are in line with the best practices of previous work. Previous work uses
manual analysis and card sort often to classify concurrency [Ahmed and Bagherzadeh 2018] and big
data [Bagherzadeh and Khatchadourian 2019] Stack Overflow questions and answers, symptoms,
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root causes, and fixes for deep learning bugs [Islam et al. 2019, 2020], and root causes for actor bugs
[Hedden and Zhao 2018; Torres Lopez et al. 2018] and multiple reopenings of bugs [Zimmermann
et al. 2012].

RQ3: API usages To answer RQ3, we manually analyze the code snippets for each actor bug
and fix in % and collect the qualified names of Akka API classes for objects that are used in method
invocations as receivers. In Akka, a message send is implemented as a method invocation. For a
Stack Overflow bug and fix question and answer, we analyze all the code snippets in the question
and its accepted answer. Similarly, for a GitHub bug and fix commit, we analyze the original code
of the bug and modified code of the fix. To disambiguate classes that have the same name but can
exist in different packages, such as Failure in akka.actor.Status and scala.util packages, we
study the context around the usage of the class in the code. The first three authors individually
analyze the code snippets to find API usages and reiterate and refine until they agree.

RQ4: Differences To answer RQ4, we investigate the differences of our actor bugs in Stack
Overflow and GitHub for commonalities and distributions of their symptoms, root causes, and
API usages. For commonality, we compare the percentages of symptoms, root causes, and API
usages between Stack Overflow and GitHub bugs. For distribution, we use a statistical t-test and a
Mann-Whitney U test to investigate if distributions of symptoms, root causes, and API usages are
the same for Stack Overflow and GitHub bugs. We report the results that are confirmed by both of
these tests.

3 BACKGROUND

In this section, we discuss the basics of the actor concurrency model and its implementation with
additional features in Akka actor framework.

3.1 Basic Actor Concurrency

Unlike multithreaded concurrency, where a program is modeled as a set of threads that communicate
using shared memory and locks, in basic actor concurrency [Agha 1986; Agha and Hewitt 1985],
a program is modeled as a set of actors that communicate by sending, receiving, and processing
asynchronous messages. An actor has its thread of execution and behavior and makes its state
accessible only through its messages. To send a fire-and-forget message, a “sender” actor sends
the message without waiting or blocking for its response. To receive a message, a “receiver” actor
enqueues the message by adding it to the end of its mailbox. Similarly, to process a message,
the actor dequeues a message by removing it from the beginning of its mailbox and executes it
sequentially to the end before processing the next message in the mailbox. Messages are processed
one by one and in the order they are received. During the processing of a message, an actor can
change state, change behavior, send a message, or create a new actor.

3.2 Akka Actor Concurrency

To allow for the development of real-world actor software, Akka implements and adds several
necessary features to the basic actor model. These features include additional message sending and
receiving patterns, parental supervision, failure management, life cycle management, serialization,
remoting, clustering, scheduling, dispatching, and testing.

Messaging patterns Using messaging patterns, in addition to an asynchronous fire-and-forget
message, a sender actor can send a request-response message and wait and block for its response in
a future variable [Halstead 1985] for a timeout period. A “future” is a placeholder for an incomplete
task with a result that is not yet ready; it will be ready when the future is “complete” Similarly, a
receiver can forward a message it receives, or route it using different strategies, such as round-robin
and broadcast. If a “receiver” actor receives a message that it cannot process using its current
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behavior, it could stash the message in a temporary buffer and processes it when the actor changes
to the appropriate behavior. If a message cannot be delivered to its original receiver actor, such as a
receiver that is terminated, Akka delivers the message to a special receiver actor /deadLetters.

Parental supervision With parental supervision, a child actor can only be created by a parent
actor. The parent is responsible to supervise its children and manage their failures. An actor fails
when it throws an exception during its creation or message processing. The supervising strategy
of a supervisor specifies if the supervisor should resume, restart, or stop the child or escalate the
failure to the supervisor of the supervisor. An actor is created in a parental hierarchy and resides
in an actor system that provides services, such as scheduling, dispatching, and configuration.

Actor life cycle With life cycles, an actor can be programmatically created and shut down. An
actor can watch the life cycle of another actor and receive messages, such as a termination message,
when the watched actor goes through different stages of its life cycle.

Remoting and clustering With remoting, actors that are in separate Java Virtual Machines
(JVMs) can send and receive serialized messages. An actor resides in an actor system, which—in
turn—reside in a JVM. Several actor systems can reside in one JVM. With clustering, individual
actor systems can form a cluster.

Schedulers and dispatchers A “scheduler” schedules the execution of a message send or a
task to occur at or during a specific time or time period. A dispatcher assigns a thread to an actor
for its execution and processing of its messages. The dispatcher has an executor that provides the
thread from a thread pool that it maintains.

4 SYMPTOMS

In this section, we answer RQ1 and discuss 70 5

the symptoms of our actor bugs, their clas- 60 o
. . ey . " ~
sification and commonalities, and provide S0 S
. S0
real-world examples of actor bugs with these 3 _
. S 40 average = 37.2
symptoms and how developers discuss these g SO A I I
3
symptoms. We also compare our symptoms  §
. . Z 20 2
with those of actor bugs from previous work -
; ; 10 S <
by Bianchi et al. [2018]. For space reasons, we 3 g E . £
adapt our bug examples from Stack Overflow 0 ' ) _ = o
. . . . Error Behavior Messaging Termination Exception
bugs, which are more likely to include min- Symptoms

imal code examples [Stack Overflow 2020]. Fig. 1. Symptoms of our actor bugs.
Our examples are written in Scala.

Figure 1 shows the symptoms of our actor bugs, their numbers, and commonalities in terms
of percentages. According to this figure, the symptoms of our actor bugs can be classified into
the following 5 categories, with decreasing commonalities: Error, Unexpected Behavior, Incorrect
Messaging, Incorrect Termination, and Incorrect Exceptions. Among these, Error is the most common
symptom (36.1%) and Incorrect Exceptions is the least common (2.2%).

4.1 Symptom 1: Error

Error is the most common symptom (36.1%) for actor our bugs. The impact of a bug with this
symptom is that an actor or its enclosing application throws an error or exception during its
execution or compilation. Errors cover a broad spectrum and range from out of memory and
timeout errors to non-unique actor name errors.

Figure 2 shows a buggy actor program [Stack Overflow 2017a] with an Error symptom. Here, the
developer intends to calculate the number Pi, using Master and Worker actors. Master divides the
calculation of Pi between its worker actors, of type Worker, and accumulates their partial calculations.
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Master receives a Calc message and to process it creates numWorker number of workers and sends
numMessages number of Work messages to each worker. In Akka, an actor is a class that extends the
trait Actor. The receive method specifies the messages that an actor receives and processes. The
ActorSystem method creates an actor system with a given name and configuration. The actor0of ()
method creates an actor with a specified name using a Props configuration object. The invocation
of actor0f() on an actor system creates an actor that resides in the actor system. The ! operator
sends a fire-and-forget message. In Scala, the construct case allows for case analysis using pattern
matching. A case class allows for the construction of immutable objects that can be constructed
without new. The val keyword declares an immutable value.
However’ this progljam 18 buggy.WIth an class Master extends Actor { ..
Error symptom. The impact of this symp- va1 sys = Actorsystem(..) ..
tom is that Master actor cannot calculate  def receive = {
Pi and instead throws a runtime excep- case Calc(numWorkers, numMessages, numElements) => {
X . . P for(i <- @ until numWorkers){
tion, of type InvalidActorNameException. val worker = sys.actorOf (Props[Worker], "worker")
An InvalidActorNameException is thrown for (j <- @ until numMessages)
PR . . . !
when the name of an actor is invalid. This is vorker 1 Work(0, nunElenents) 3 3 J .. 3
. class Worker extends Actor { .. }
because Master attempts to create multiple case class Work(..) { .. }
worker actors with the same name “worker.”
However, in Akka, actor names must be
unique. The developer explains this symptom and its impact as:

Fig. 2. Actor bug with an Error symptom.

“Tam getting an error when trying to create a .. Master Akka actor. I am not sure why I am getting
this error: [InvalidActorNameException: actor name worker is not unique!]”

An application throwing an out-of-memory exception after it uses all of its available memory, a
future throwing a timeout exception after the future is not complete during its timeout period, an
actor throwing a transport exception after it sends a message to a remote actor it cannot lookup,
and an actor throwing an exception after it cannot process the termination message of the actor it
is watching are more examples of our Error symptom.

Our Error symptom overlaps with Bianchi et al.’s [2018] Crash and Assertion Violation symptoms.
They classify the existing actor testing techniques [Lauterburg et al. 2010; Sen and Agha 2006;
Tasharofi et al. 2013] and identify 3 symptoms Crash, Deadlock, and Assertion Violation that these
techniques use to identify buggy executions at runtime. Their Crash symptom “identifies executions
that lead to system crashes” Similarly, their Assertion Violation symptom is about the violation of
“assertions about the correct behavior of a system.” An assertion violation throws an exception.

4.2 Symptom 2: Unexpected Behavior

Unexpected Behavior is the second most common symptom (28.5%) for our actor bugs. The impact
of a bug with this symptom is that an actor or its enclosing application does not behave in a way
that the developer expects from its implementation. Unexpected behaviors cover a broad spectrum
and range from misbehaving schedulers, dispatchers, and supervisor actors to misbehaving loggers
and method invocations.

Figure 3 shows a buggy actor program [Stack Overflow 2017c] with an Unexpected Behavior
symptom. Here, the developer intends to write to two files concurrently using a FileWriter actor,
which receives a Save message. To process it, the actor writes its string str to a file with the name
file. The Main application creates fileWriter and sends two Save messages to it for writing strings
str1 and st2 to files filel and file2, respectively. Main wraps these message sends in future tasks,
of type Future, to allow for their concurrent execution. In Scala, an application is a class that
extends the App class, which provides the main() entry method.
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However, this program is buggy with an Unexpected Behavior symptom. The impact of this
symptom is that the fileWriter actor does not write to filel and file2 concurrently but instead
sequentially. This is because, in Akka, an actor processes its messages sequentially. The second Save
message is processed only after the processing of the first one is finished. The developer explains

this symptom and its impact as (punctuation added for clarity):
“I am trying to write to multiple files concurrently using the Akka framework. First, I create

a[n] [actor] class called FileWriter that writes to a file. Then, using futures, I [send messages
to] the [fileWriter actor] twice, hoping that 2 files will be created and [written into] for me
[concurrently]. But, when I monitor the execution of the program, it first populates [and writes

into] the first file and then the second one [sequentially]”
A scheduler not scheduling its message
sends after the application increases the class Main extends App { ..
number of its actors, an actor resetting ‘2. SYS = Actorsysten(..)
. ’ . g val fileWriter = sys.actorOf(Props(new FileWriter),..)
its state unexpectedly after processing a [Future { fileWriter | Save (filel, stri) 3
message, the sender method returning the [Future { fileWriter ! Save (file2, str2) } }
class FileWriter extends Actor {

wrong value of the self method, and an P o

. . . ef receive = {
actor leaking its database connections are case Save(file, str) => saveToFile(file, str) } }
more examples of our Unexpected Behavior ~case class Save(file: String, str:String)
symptom. sender returns the sender of the Fig. 3. Actor bug with a Behavior symptom.
current message of an actor. self returns the current actor instance.

Our Unexpected Behavior symptom overlaps with Bianchi et al.’s [2018] Crash symptom.

4.3 Symptom 3: Incorrect Messaging

Incorrect Messaging is the third most common symptom (25.3%) for our actor bugs. The impact
of a bug with this symptom is that an expected message is not sent by an intended sender of the
message or not received, stashed, or processed by its intended receiver. The opposite holds for an
unexpected message.

Figure 4 shows a buggy actor program sbject Starbucks extends App { ..
[Stack Overflow 2019] with an Incorrect a1 employees =
Messaging symptom. Here, the developer  List(sys.actorOf(Props[Employeel, "Penny"),..)
imtends 10 route the requests of the cus- 1% s L Ctay et )
tomers of the Starbucks coffee ShOp ap- (SmallestMailboxRouter(routees = employees))
plication to the employees of the shop. customers foreach { ..
Starbucks creates the router actor, of type dzl;sst;:;;o:y;rzl:t;;dls iir;i}:a‘ze(‘ SRR
SmallestMailboxRouter, with a list of em- gef receive = ¢
ployee actors as routees. A router is an actor case CanIHave(coffee, name) => ..
that receives a message and forwards it to = sender-tell(fakeCofee(cofee, ‘name), .07 33
its routees without changing the sender of Fig. 4. Actor bug with a Messaging symptom.
the message to itself. For each customer in the customers list, Starbucks sends a CanIHave mes-
sage to router, and router forwards this message to employees, of type Employee. The Employee
receives a CanIHave message, and—to process it—sends a MakeCoffee message back to its sender
for the final preparation of the coffee. The developer assumes that the sender of CanIHave is
router; therefore, MakeCoffee is sent to router, which forwards this message back to employees.
In Akka, the withRouter() method configures a router actor with a given routing strategy. A
SmallestMailboxRouter forwards its message to routees with fewer messages in their inboxes. The
tell() method sends a fire-and-forget message to its receiver object.

However, this program is buggy with an Incorrect Messaging symptom. The impact of this
symptom is that the MakeCoffee message is not sent to router; thus, it is not routed to employees.
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Instead, MakeCof fee is sent to /deadLetters. This is because router does not change the sender of the
CanIHave message that it forwards from Starbucks to Employee. Therefore, Starbucks is the sender
of CanIHave and not router. However, Starbucks is an application and not an actor; thus, sender in
Employee evaluates to /deadletters instead of router. The developer explains this symptom and
its impact as:

“Ican’t send a [MakeCoffee message] reply back to the router so that another [Employee] actor in the
routing list [employees] can pick this [MakeCoffee message] up ... when replying [to the router],
it will give the following message in the console: ...Message [router.MakeCoffee$] from Ac-
tor[akka: //actorSystem//user//Penny/#-847662818] to Actor[akka://actorSystem/deadLetters]
was not delivered.. dead letters encountered.”

The actor name akka://actorSystem//user//Penny/#-847662818 denotes the Penny/#-847662818
actor instance for the employee Penny in employees, which is a user actor in the actorSystem actor
system. Similarly, /deadLetters is an actor in actorSystem. Akka distinguishes between user-created
and system-created actors.

A parent actor not receiving the termination message of its child when it terminates, a mailbox
receiving and processing more messages than its specified capacity, an actor losing its stashed
messages, and a server actor ignoring messages from its client when they are sent too fast and too
frequently are more examples of our Incorrect Messaging symptom.

Our Incorrect Messaging symptom is new and cannot be found in Bianchi et al.’s [Bianchi et al.
2018] symptoms for actor bugs.

4.4 Symptom 4: Incorrect Termination

Incorrect Termination is the fourth common symptom (8.1%) for our actor bugs. The impact of a
bug with this symptom is that an actor or its enclosing application does not terminate, terminates
prematurely, terminates and restarts infinitely, or hangs.

Figure 5 shows a buggy actor program object Pureakka {
[Stack Overflow 2012b] with an Incorrect  gef main(argy : Array[Stringl) = {
Termination symptom. Here, the developer = val actorSystem = ActorSystem(..)

intends to create the actor myActor‘ Of val myActor = actorSystem.actorOf(Props(new MyActor {
> override def receive = { .. }

type MyActor, work with it for some time, override def preStart() = println("prestart")
and then terminate the application. The override def postStop() = println("poststop") }))
PureAkka application creates myActor and mg:CVt“Z;k!W;EESZﬁ ’;Ci;‘ir }*/}

overrides its receive(), preStart(), and class MyActor extends Actor { .. }

postStop() methods. After working with
myActor, PureAkka shuts down the actor. The
preStart() and postStop() life cycle methods are invoked by Akka automatically before an actor
starts its execution and after it terminates, respectively. The PoisonPill message terminates the
actor that receives and subsequently processes it.

However, this program is buggy with an Incorrect Termination symptom. The impact of this
symptom is that the PureAkka application continues its execution and does not terminate even
after the termination of the myActor actor. This is because terminating myActor does not terminate
either its enclosing actor system actorSystem nor the PureAkka application in which it executes. The
invocation of preStart()—before myActor starts its execution—prints “preStart” on the console.
Similarly, the invocation of postStop()—after myActor stops its execution—prints “postStop.” How-
ever, both actorSystem and PureAkka continue their executions after the termination of myActor.
The developer explains this symptom and its impact as:

Fig. 5. Actor bug with a Termination symptom.
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“I've written ...code that starts [myActor], kills it and finishes execution. This code prints [to the
console]: "[info] prestart’ '[info] poststop.’ But, [the PureAkka application] refuses to stop until I
kill the process with CTRL-C. What does the application wait for?”

An actor not terminating after processing a message that throws an exception, an application

hanging after increasing the number of messages that its actors should process, a parent actor
waiting on the termination of its children and never terminating, and an application deadlocking
when shutting down its actor system are more examples of our Incorrect Termination symptom.

Our Incorrect Termination symptom overlaps with Bianchi et al.’s [2018] Deadlock symptom.
Their Deadlock symptom “identifies [buggy] executions that lead to deadlocks.”

4.5 Symptom 5: Incorrect Exceptions

Incorrect Exceptions is the least common symptom (2.2%) for our actor bugs. The impact of a bug
with this symptom is that an intended actor does not throw, catch, or properly handle an expected
exception. The opposite holds for an unexpected exception.

Figure 6 shows a bug.gy actor program . i ends App ¢
[Stack Overflow 2013] with an Incorrect Ex- eryg
ceptions symptom. Here, the developer in- var act =

context.actorOf (Props(classOf[MyActor],..)..)}

tends to create the act actor, of type MyAct9r, catch { case e: UserExe = println(*failed!™) 3 3
and catch and handle the exception that its class Myactor(..) extends Actor {

creation may throw. The app application cre-  def this(..) { throw new UserExc(..) }
def receive = { .. } .. }

ates act and surrounds its construction with )
class UserkExc extends Exception { .. }

a try-catch to catch and handle its UserExc
exception by printing “failed!” to the con-
sole. MyActor defines the constructor this() that throws UserExc. In Akka, the context variable is
the context of the current actor. The invocation of actor0f() on context creates an actor as the
child of the current actor.

However, this program is buggy with an Incorrect Exceptions symptom. The impact of this
symptom is that the exception UseExc is not caught in the application app. This is because, in
Akka, an exception that an actor throws—during its creation or message processing—is caught and
handled by its parent actor. Here, the parent of act is the actor /user and not app. In Akka, /user is

the parent of all user actors. The developer explains this symptom and its impact as:
“The problem I'm having is that it seems like, in Akka, the context.actor0f () call [in the applica-

tion app] isn’t actually creating the MyActor object [act] itself [in the same thread that app runs
on], but deferring it to another thread. So when the constructor [of MyActor] throws an exception,

the try-catch block that I put in has no effect”
A sender actor not being able to catch the exception that its receiver actor throws when processing

its messages, a child actor not being able to log the exception it throws after its parent actor is
terminated, and a test application not being able to catch the exception that its actor under test
throws are more examples of our Incorrect Exceptions symptom.

Our Incorrect Exceptions symptom is new and cannot be found in Bianchi et al.’s [2018] symptoms
for actor bugs.

Fig. 6. Actor bug with an Exceptions symptom.

4.6 Implications

Using our new symptoms to extend the set of buggy executions to test for and identify
Bianchi et al. [2018] classify Bita [Tasharofi et al. 2013], Basset [Lauterburg et al. 2010] and the
work by Sen and Agha [2006] as bug finding tools and techniques for actor software. These works
generate inputs, messages and their orders to run the code and use Crash, Deadlock, and Assertion
Violation symptoms—as testing oracles—to identify buggy executions and bugs. For example, Bita
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finds Akka bugs with Crash and Assertion Violations symptoms. Our Error, Unexpected Behavior,
and Incorrect Termination symptoms overlap with Bianchi et al.’s symptoms. However, our Incorrect
Messaging and Incorrect Exceptions symptoms, accounting for 27.5% of our actor bugs, are new.
Previous and future actor bug finding tools and techniques can use our new symptoms to extend
the set of executions that they consider as buggy and therefore increase the number of bugs that
they may find.

5 ROOT CAUSES

In this section, we answer RQ2 and discuss the root causes of our actor bugs, their classification
and commonalities, and provide real-world examples of actor bugs with these root causes and their
fixes. We also compare our root causes with those of actor bugs from previous work by Hedden
and Zhao [2018] and Torres Lopez et al. [2018].

Figure 7 shows the root causes of our actor =
bugs, their numbers, and commonalities in
terms of percentages. According to this fig-
ure, the root causes of our actor bugs can be
classified into the following ten categories,
with decreasing commonalities: Logic, Race, s
API Confusion, Explicit Life Cycle, Program- ~
ming, Messaging Patterns, Model Confusion, H m :

. . . . & <l =
Mlsnammg’ Mlsconﬁgur ation, and Untyped Logic Race API  Life Prog Patterns Model Naming Config Untype
Communication. Among these, Logic is the ) Root causes

Fig. 7. Root causes of our actor bugs.
most common root cause (19.4%) and Untyped
Communication is the least common (1.1%).
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5.1 Root Cause 1: Logic

Logic is the most common root cause (19.4%) for our actor bugs. A program is a set of steps to
implement a logic that transforms the input of the program to its desired output and effects. Akka
developers are responsible for the correct implementation of the logic of their programs. Otherwise,
incorrect implementation of the logic can cause bugs.

Figure 8 shows a buggy actor program T
[GitHUb 20133] with a LOgiC root cause. class TcpConnection(..) extens Actor .. { ..
Here, the developer intends to accept a TCP  val channel:SocketChannel = ..
connection—in the TcpConnection actor—and ~ def receive: Receive {
transfer data over this connection by writ- <. triteddata, . ) =

/* write data into channel */}
ing it to a network socket channel of type class Pend(rem:ByteString, buffer:ByteBuffer,..)..{

SocketChannel. TcpConnection receives a mes-  def writeToChannel(data:ByteString): Pend = { ..
. . . . channel.write(buffer) ..
sage Write and, to process it, writes its data to if (buffer.hasRemaining) {
channel. Writing to a SocketChannel requires if (data eq rem) this
a buffer to sit between the channel and the else ';ew Pend(data, buffer, ..) }
. . . else if (data.nonEmpty) { ..
TepConnection. The data is copied to the buffer val copied = rem. copyToBuffer (buffer) ..

and then written to the channel from the buffer. writeToChannel(rem drop copied) } .. } .. }

Depending on the sizes of the buffer, data, and

val copied = data.copyToBuffer(buffer) ..

channel, there are no guarantees that the data writeToChannel (data drop copied) 3 .. 3 .. }

can be copied to the buffer or that the buffer
can be written into the channel fully at once.
Therefore, a loop that attempts to copy and write some data to and from the buffer to the channel,
track uncopied and unwritten data, and copy and write them in the next attempt is needed. The

Fig. 8. Actor bug with a Logic root cause.
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writeToChannel() recursive method of the pend class copy data to buffer, write buffer to channel,
and track the unwritten data rem of the buffer. To write data to channel, writeToChannel() first
attempts to write the unwritten data of buffer, from its previous invocation, to channel. Afterwards,
it checks if there is any unwritten data remaining in the buffer. If there is, writeToChannel () returns
the receiver this of its current invocation if data is old and is the same as rem that was not written in
its previous invocation. Otherwise, writeToChannel() creates a new Pend object to for writing data
that is new and pending to be written to the channel later. If there is no unwritten data remaining in
the buffer and data is not empty, writeToChannel() attempts to copy rem to the buffer and invokes
itself with any data in rem that cannot be copied.

However, this program is buggy with an Unexpected Behavior symptom and a Logic root cause.
The impact of this symptom is that larger data is broken into smaller parts for copying and writing;
however, these parts become mixed and garbled such that the original and transferred data differ.
The developer explains this symptom as, “Tcp.Writes get garbled ... if a write [to channel] is [larger]
than 300k”. The root cause of this bug is that the developer implements the logic for writing the data
to the channel incorrectly and copies rem to the buffer, instead of data, although rem will be written
to the channel using this. Similarly, the developer invokes writeToChannel() recursively with any
uncopied part of rem instead of data. This causes rem—or part of it—to be written into the channel
more than once or data—or part of it—not to be written at all. The fix for this bug, as shown in
Figure 8, suggests copying data—and not rem—to the buffer and invoking writeToChannel() using
the uncopied part of data—and not rem. In Scala, copyToBuffer() copies data into a buffer and
returns the number of copied bytes. The drop() method removes the first n bytes of a ByteString.

Our Logic root cause overlaps with Hedden and Zhao’s [2018] Logic root cause. They study 126
Akka actor bugs in 12 projects from the Scalalndex website and classify their root causes into three
categories and ten subcategories, with subcategories inside parentheses: Logic, Communication
(Response, Connection, Error Handling, Message Order), and Coordination (Cooperation, Shutdown,
Recovery, Workload, Operation Order, Creation). Their Logic bugs “range from common null pointer
errors, optimization issues for buffers ...and any other number of bugs a program must solve
during development.” In addition, our observation that Logic is the most common root cause for
our actor bugs agrees with Hedden and Zhao’s observation that “Communication and Coordination
[bugs together] occur less than common Logic bugs” However, their Logic bugs are 57.9% of their
bugs, whereas our Logic bugs are only 19.4% of our actor bugs.

5.2 Root Cause 2: Race

Race is the second most common root cause (14.6%) for our actor bugs. A race happens when two
conflicting computations have different execution and program orders. Two computations conflict
if they access the same memory region concurrently and at least one of them writes to the region.
Execution and program orders specify the orders in which computations execute at run time and
occur in the program code at compile time. Akka developers are responsible to write code that is
free from races. Otherwise, races can cause bugs.

Figure 9 shows a buggy actor program [Stack Overflow 2018b] with a Race root cause. Here, in
the actor DownloadImageActor, the developer intends to asynchronously download an image and
inform the actor that has requested this download of its success or failure. DownloadImageActor
receives a DownloadImage message from a sender actor, say A, and to process it invokes the asynchro-
nous method downloadImage() of imageDownloadService. This asynchronous invocation means that
DownloadImageActor does not block and wait for the completion of the invocation result. Instead,
the invocation returns immediately with an incomplete future as the placeholder for its result.
The future is complete when the invocation finishes its execution. To process the result of the
invocation, DownloadImageActor registers an onComplete() callback to be invoked when the future
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is complete. The callback sends a ImageDownloadSuccess message back to the sender A if the value
of the future is a Success.
However, this program is buggy with an p

,
Incorrect Messaglng Symptom and a Race class DownloadImageActor(..) extends Actor .. { ..
root cause. The impact of this symptom override def receive: Receive = {
is that the sender A does not receive the _ case DownloadImage(jobld, imageUrl) =>

load di d imageDownloadService.downloadImage().onComplete {

ImageDownloadSuccess message, and instea case Success(image) =>
this message is sent to /deadLetters actor. sender() ! ImageDownloadSuccess(..)

The developer explains this symptom as case Failure (L) => .. })
« »
deadletters encountered” The root cause =

. . X val client = sender()
of this bug is that there is a race between imageDownloadService.downloadImage () .onComplete {

accesses to the value of the sender ac- case Success(image) =>
tor. downloadImage and DownloadImageActor client ! InageDownloadSuccess(..)

could run concurrently and on two different Fig. 9. Actor bug with a Race root cause.
threads. By the time downloadImage is complete, DownloadImageActor could have received a new
message from another sender, say B, that is different from the original sender A. Therefore, sender ()
evaluates to B and ImageDownloadSuccess is sent to B, instead of A. Here, not only B is the wrong
sender but also by the time ImageDownloadSuccess is sent to it, B does not exists anymore to receive
the message, maybe due to termination. Therefore, ImageDownloadSuccess cannot be delivered to
B and instead is delivered to /deadLetters. The fix for this bug, as shown in Figure 9, suggests
invoking sender () outside onComplete(), instead of inside, assigning its value to the variable client,
and send ImageDownloadSuccess to client, instead of sender ().

This bug and its incorrect way of using the mixture of actors and futures is a good example of
the misuse of the mixture of concurrency models [Swalens et al. 2014]. These mixtures are often
necessary for the implementation of real-world actor software [Swalens et al. 2014; Tasharofi et al.
2013], however their misuse can cause bugs. Tasharofi et al. [2013] study 15 large and mature Scala
Akka software and observe that “80% of them mix actor model with another concurrency model
[such as multithreaded concurrency]” where “mixtures of Actor[s] and Future[s] are common.

The race in Figure 9 is a simple bug with a well-known anti-pattern of closing over the mutable
sender () in the callback of a future. This anti-pattern is well-documented in several places, such
as Akka documentation [Lightbend 2020b], books [Khot 2018; Lewis and Lacher 2016], and blogs
[Manuel Bernhardt 2020]. However, both Stack Overflow and GitHub developers still write buggy
actor code with this race as the root cause. In fact, 29.6% of our Race bugs close over sender(), in
the call back of a future or a scheduled message or a task. The anti-pattern behind these bugs is
syntactic and can be found using a simple static analysis.

Races between messages that are sent concurrently to the same actor [Bagherzadeh and Rajan
2017; Tasharofi et al. 2013], between asynchronous life cycle actions of the actor, such as creation,
initialization, lookup, restart, and termination, and between messages and life cycle actions are
more examples of our Race root cause. There are actor frameworks and languages that are less
susceptible to our Race bugs. For example, Orleans [Bernstein et al. 2014] supports more implicit
life cycle management and is less susceptible to races between life cycle actions and messages.
Similarly, Erlang [Armstrong 2007] prevents sharing among its actors and is less susceptible to
races between accesses to shared data.

Our Race root cause overlaps with Hedden and Zhao’s [2018] Message Order, Operation Order, and
Cooperation root causes. Their Message Order bugs occur when a “developer expects messages to
arrive in a certain order instead of planning around the non-deterministic nature of actor messaging.”
Similarly, the reason for their Operation Order bugs is that “much like message ordering, there are
sometimes issues that occur as a result of the [incorrect] order of a job being carried out on a system”
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Finally, their Cooperation bugs occur because of the “problems occurring from actors performing or
existing simultaneously [concurrently]” In addition, our Race overlaps with Torres Lopez et al.’s
[2018] Bad Message Interleaving and Memory Inconsistency root causes. They study 23 actor bugs in
various actor models from 11 previous works and classify their root causes into 2 categories and 6
subcategories, with subcategories inside parentheses: Lack of Progress (Communication Deadlock,
Behavioral Deadlock, and Livelock) and Message Protocol Violation (Message Order Violation, Bad
Message Interleaving, and Memory Inconsistency). Their Bad Message Interleaving bugs occur when
“a message is processed between two messages which are expected to be processed one after the
other” Similarly, their Memory Inconsistency bugs occur when “different actors have inconsistent
views of shared resources.”

5.3 Root Cause 3: API Confusion

API Confusion is the third most common root cause (14.0%) for our actor bugs. Akka API provides a
large number of 1,438 public classes with 41,554 methods [Akka 2.6.5 API 2020]. In comparison, the
general-purpose programming language Scala provides only 491 classes with 38,334 methods [Scala
2.13.2 API 2020]. Akka API classes support a broad spectrum of actor functionalities ranging from
untyped to typed actors, remoting to clustering, and supervision to routing. The syntax, semantics,
and usage constraints for these classes could differ significantly, even for similar functionalities.
For example, unlike any other supervisor actor that by default restarts its children on failure,
BackoffSupervisor stops and starts its children. In addition, these differences can exist for similar
functionalities in different versions of Akka. Akka developers are responsible to understand and
satisfy syntax, semantics, and usage constraints of Akka API classes. Otherwise, confusions can
cause bugs.

Figure 10 shows a buggy actor program -
[Stack Overflow 2018c] with an API Confu- 7 SenderActor () extends Acor .
sion root cause. Here, the developer intends  override preRestart(..): Unit = { ..
for the supervisor actor BackoffSupervisor  /* send a message to supervisor</ }
to restart its child actor SenderActor when it o;/:srglsr:d(:iei riﬁfﬁfgfﬁiﬁig;&. DID I
throws an exception and fails. SenderActor class Main extends App {
overrides its preRestart() method to send  val childProp = Props(new SenderActor())
a failure message to its supervisor. After- VS;CE;?EQSSE;visor.props(Backoff‘onFailure(childProp,..)
Wards, it receives a cmd message and to pro- .withSupervisorStrategy(OneForOneStrategy(..) {
cess it throws a MsgExc exception' Throw- case m: MsgExc => { SupervisorStrategy.Restart}..}))

. . . val sup = context.actorOf (supProps
ing this exception should cause the par- P (supProps)
sup ! cmd }

ent BackoffSupervisor to restart its child

SenderActor. The Main application creates BackoffSupervisor.props(Backoff.onStop(childProp,..)
the configuration objects childProps and Fig. 10. Actor bug with an API root cause.
supProps. A configuration object specifies
options that are used in the creation of an actor. childProps configures a child actor, of
type SenderActor, and supProps configures a BackoffSupervisor with a supervision strategy
OneForOneStrategy for exception handling. Main creates the supervisor actor sup with the con-
figuration supProps and sends a cmd message to it. sup forwards this message to its child which
fails during its processing. In Akka, a BackoffSupervisor restarts its child whenever it throws an
exception, but each time with an increasing delay. OneForOneStrategy of a parent applies only to
the child that fails and leaves other children intact. PreRestart is invoked by Akka before an actor
restarts.

However, this program is buggy with an Unexpected Behavior symptom and an API Confusion
root cause. The impact of this symptom is that the failed child SenderActor does not restart and
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its preRestart() is not invoked. The developer explains this symptom as “T attempted to resend a
message to the [BackoffSupervisor] actor on preRestart() hook [of SenderActor], but somehow
the hook is not being triggered.” The root cause of this bug is that the developer does not know
that BackoffSupervisor and its Backoff.OnFailure method are significantly different from other
supervisors in Akka. Backoff.OnFailure does not restart SenderActor and instead stops and starts
it and thus its preRestart() is never invoked. The fix for this bug, as shown in Figure 10, suggests
using Backoff.OnStop to restart SenderActor, instead of Backoff.OnFailure.

This bug, similar to the bug in Figure 9, is well-documented in Akka API documentation [Light-
bend 2020a]. The documentation says “note that this supervision strategy [onFailure()] does not
restart the actor but rather stops and starts it. The preRestart() hook will not be executed if the
supervised actor fails or stops” However, we observe that the developer still writes this buggy actor
code with this API confusion as the root cause.

Our API Confusion root cause is new and cannot be found in Hedden and Zhao’s [2018] or
Torres Lopez et al.’s [2018] root causes for actor bugs.

5.4 Root Cause 4: Explicit Life Cycle

Explicit Life Cycle is the fourth most common root cause (12.4%) for our actor bugs. In Akka, an
actor goes through different life cycle phases, such as creation, initialization, lookup, monitoring,
termination, and restart. The life cycle of the actor should be managed explicitly and manually. In
addition, the explicit life cycle management is combined with the implicit life cycle management.
Unlike explicit life cycle management that is implemented by and is visible to the developer,
the implicit and automatic life cycle management is implemented by Akka and is invisible to
the developer. For example, Akka invokes life cycle methods preStop and postStop of an actor
implicitly right before and after it shuts down the actor. Finally, explicit and implicit life cycle
managements are combined with features such as parental supervision and actor systems. For
example, a parent actor terminates only after all of its children terminate. Akka developers are
responsible to understand and correctly manage these life cycles explicitly and manually. Otherwise
mismanagements can cause bugs.
Figure 11 shows a buggy actor program .

[Stack Overflow 2017b] with an Explicit Life . "parent extends Actor { ..

Cycle root cause. Here, the developer intends  val c = context.actorof(Props[Child])
to perform some cleanup in the child actor override def postStop { = :

hild bef the t inati £it t log.info("Shutdown .. Sending message to child..")
Child before the termination of its paren val future = ¢ 2 "doCleanup"
actor Parent stops and terminates the child.  log.info("Waiting for child to complete task..")
Parent creates its child c. Afterwards, it over- | Await.result(future, Duration.Inf)

. . context.stop(c)
rides its postStop() method to send the mes- 15 ino(child stopped. Stopping self. Bye!")
sage "doCleanup" to c and blocks and waits  context.stop(self) } }
for its result future. Parent continues by stop- ¢Lass Child extends Actor { .. J

ping and terminating c and then terminating  ZZC e o R T
itself. In Akka, the ? operator sends a request-  override def postStop {

reply message. The result() method blocks //move child cleanup from ParentActor to here }
on a future for a timeout period and returns Fig. 11. Actor bug with a Life Cycle root cause.
the value of the future if it completes during this period. Otherwise, it times out and throws an
exception. The stop() method terminates an actor. The self variable refers to the current actor
instance.

However, this program is buggy with an Error symptom and an Explicit Life Cycle root cause.
The impact of this symptom is that the child ¢ does not do any cleanup. The developer explains
this symptom as, “[ERROR] Recipient Actor[akka: ..Parent/Child#70868360] had already been
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terminated.” The root cause of this bug is that the developer misunderstands the explicit and implicit
life cycle managements for Parent and ¢ and their combination with the parental supervision of ¢
by Parent. A parent actor stops only after all its children terminate and not before. Therefore, when
Akka invokes postStop() of Parent the child c is already stopped and cannot receive and process
“doCleanup()”. The fix for this bug suggests overriding postStop() of Child and perform the cleanup
of the child in there, instead of in postStop() of Parent. In addition to this bug, there is another bug
in this program that causes Parent to block forever. This is because Parent sends a request-reply
message to ¢ and waits for its reply for the infinity duration of Duration.Inf. However, c is already
stopped and never sends a reply back. Finally, the program in Figure 5 is another example of an
actor bug with an Explicit Life Cycle root cause. Here, the developer explicitly terminates the actor
myActor but forgets to explicitly terminate its enclosing actor system actorSystem.

Missing the explicit starting of remote actors before messaging them, explicit creation of actors
before looking them up, and explicit termination of actors and actor systems before termination of
their enclosing applications, are more examples of our Explicit Life Cycle root cause. There are actor
frameworks and languages that are less susceptible to our Explicit Life Cycle bugs. For example,
Orleans [Bernstein et al. 2014] supports more implicit and automatic actor life cycle management
and is less susceptible to bugs that are due to explicit and manual mismanagements of life cycles.

Our Explicit Life Cycle root cause overlaps with Hedden and Zhao’s [2018] Creation, Shutdown,
and Recovery root causes. Their Creation bugs “occur as a result of this [incorrect] actor creation
... [that] can lead to errors if improperly implemented.” Their Shutdown bugs are bugs “involving a
problematic shutdown process [since] every system must shut down at some point and should do
so gracefully” Their Recovery bugs occur due to “unexpected variables or events involved during
this [actor] recreation process [that] if not anticipated would lead to errors [because] the actor
model is built to allow actors that fail to recover ...by having its master [supervisor] recreate it

5.5 Root Cause 5: Programming

Programming is the fifth most common root cause (12.4%) for our actor bugs. A program should
satisfy the syntactic and semantics requirements of the programming language that is used to write
it. Otherwise, violations could cause bugs.

Incorrect dependencies and imports, recreation of singleton objects, matching against erased
type variables, and confusing classes with identical unqualified names that belong to different
packages are examples of our Programming root cause.

Most (60.9%) of our Programming bugs are compile-time bugs and can be detected by compilers
statically whereas the rest (39.1%) are run-time bugs.

Our Programming root cause overlaps with Hedden and Zhao’s [2018] Logic root cause.

5.6 Root Cause 6: Messaging Patterns

Messaging Patterns is the sixth most common root cause (9.7%) for our actor bugs. In Akka, an
actor can use several messaging patterns for sending and receiving messages. These patterns,
such as request-response, forward, and route, can have complex semantics. For example, for a
request-response message Akka creates an additional actor, that is invisible to the developer, to
process the future reply of the message. In addition, the complex semantics of these patterns can be
combined with the semantics of other features of Akka, such as parental supervision and exception
handling. Akka developers are responsible to understand these complex semantics to use these
patterns correctly. Otherwise, misuses can cause bugs.

Figure 12 shows a buggy actor program [Stack Overflow 2016] with a Messaging Patterns root
cause. Here, the developer intends for the parent actor Deletion to send a delete message to its
child ES and either receive a reply for the successful deletion or restart the child if it throws an
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exception and fails. Deletion overrides its supervision strategy to restart its child when it throws
an exception and creates the child actor es, of type ES. Afterwards, it sends a request-reply message
DeleteFromES to es and blocks on its future reply f for the duration of timeout. ES overrides its
preRestart() and postRestart() methods. Afterwards, it receives the message DeleteFromeS and
to process it throws an exception, of type Exception. Throwing this exception should cause the
parent Deletion to restart the child ES. In Akka, the ask method sends a request-reply message.
However, this program is buggy with an
Unexpected Behavior symptom and a Messag- 1;¢¢ peletion extends Actor { ..
ing Patterns root cause. The impact of this  override val supervisorstrategy =
symptom is that the child es does not restart OneForOneStrategy(..){case _:Exception => Restart}
d i d val es = context.actorOf(Props[ES]..) ..
and its preRestart() and postRestart() val f = ask(es, DeleteFromES(..))
methods are not invoked. The developer ex- | val isbel = Await.result(f, timeout.duration) ..}}
plains this symptom as, “postRestart() and ¢12ss ES extends Actor { ..
hod £ t oetti override def preRestart() { .. } ..
PreRestart() methods [of es] are not geting  oierrige def postrestart) { .. } ..
invoked.” The root cause of this bug is that  def receive = {

the developer misunderstands the semantics _ case Deletefromes(..) =>
throw new Exception("..") ..} }

of the request-response pattern and its com-

binations with the semantics of parental su-  f.oncomplete {

bug

pervision and exception handling. The parent case Success (..) => ..
Deletion sends a request-response message case Failure(..) = ..}
and blocks and waits for some time for the Fig. 12. Actor bug with a Patterns root cause.

reply from the child es. However, es does not send the reply and instead throws an exception,
that is stored in f, and fails. es may throw its exception before or after Deletion’s wait is over.
For before, Deletion is still blocked and cannot restart es. For after, Deletion throws a timeout
exception and fails itself and cannot restart es. The fix for this bug, as show in Figure 12, suggests
using the callback onComplete() on f, to identify if the result of the request-reply message is a
success or a failure.

Our Messaging Patterns root cause overlaps with Hedden and Zhao’s [2018] Response root cause.
Their Response bugs occur due to “improper responses to different communication-based operations
[messages]”

5.7 Root Cause 7: Model Confusion

Model Confusion is the seventh common root cause (7.6%) for our actor bugs. The computation
model of Akka actor concurrency is significantly different from multithreaded concurrency, as
discussed in Section 3. In addition, well-known and basic functionalities may have significantly
different semantics in these models. For example, parental supervision and exception handling for
Akka actors are significantly different from standard exception handling for Scala threads. Akka
developers are responsible to clearly understand Akka and its underlying computational model.
Otherwise, confusions can cause bugs.

Figure 13 shows a buggy actor program [Stack Overflow 2012a] with a Model Confusion root cause.
Here, the developer intends to evaluate the performance of a LoadWorker router. The LoadGenerator
actor creates the router actor loadRouter, of type LoadWorker, with a round robin routing strategy.
Afterwards, it receives a "start" message and to process it sends an infinite number of random
messages to loadRouter. A RoundRobinRouter forwards its messages to its routees one after another.

However, this program is buggy with an Incorrect Termination symptom and a Model Confusion
root cause. The impact of this symptom is that the LoadGenerator actor cannot evaluate the perfor-
mance of the LoadWorker router and instead hangs. The developer explains this symptom as, “actor
app hangs under high volume.” The root cause of this bug is that the developer is confused about the
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basics of Akka actor model and its message processing semantics. To process "start," LoadGenertor
sends messages to loadRouter in an infinite loop. Therefore, to process its first “start” and the
messages it receives afterwards, LoadGenertor should be able to process its messages concurrently
and more than one message at a time. However, in Akka, an actor processes its messages sequen-
tially, one after another. Therefore, LoadGenerator falls into an infinite loop when processing its
first “start,” never finishes its processing, and never starts the processing of its next messages. The
fix for this bug, as shown in Figure 13, suggests using self-messaging to send the “start” messages
in batches with the size batchSize, instead of an infinite loop. In addition, the program in Figure 3
is another example of a bug with a Model Confusion root cause. Here, the developer is similarly
confused about the sequential processing of messages in the FileWriter actor.

Sending a message from a non-actor entity
to an actor, inVOking a method of an actor class LoadGenerator(..) extends Actor { ..
instead of sending it a message, and sending  val loadRouter = context.actor0f (Props[LoadWorker]

a message to an actor Actor instead of its ref-  -withRouter(RoundRobinRouter(..)..))
A Ref 1 £ def receive = {
erence ActorRef, are more examples of our oo oy
Model Confusion bugs. Akka separates an ac- | while(true)
tor, of type Actor, and its reference, of type JesElRauiar || (roeEdiinelentae ) S b o5
class LoadWorker extends Actor { .. }

ActorRef, and makes the actor accessible Only

through its reference to make states of the (1 to batchSize) foreach {

actor accessible by its messages. Note that loadRouter ! r.getRandomCommand() }
this separation still cannot guarantee that the self ! Tstart
state of the actor is not shared with other ac- Fig. 13. Actor bug with a Model root cause.

tors. There are actor models that are less susceptible to our Model Confusion bugs. For example,
academic actor models that support Parallel Actor Monitors [Scholliers et al. 2014] and transactional
message processing [Hayduk et al. 2015], allow for concurrent message processing and are less
susceptible to bugs related to sequential message processing. However, industrial-strength actor
frameworks and languages, such as Akka, Orleans [Bernstein et al. 2014], and Erlang [Armstrong
2007], processes their messages sequentially.

Our Model Confusion root cause is new and cannot be found in Hedden and Zhao’s [2018] or
Torres Lopez et al.’s [2018] root causes for actor bugs.

5.8 Root Cause 8: Misnaming

Misnaming is the eighth most common symptom (5.4%) for our actor bugs. An actor name includes
several properties of the actor, such as its proper name, enclosing actor system, user or system actor,
supervision hierarchy, network protocol, and port number. Akka actor developers are responsible
to manually provide and maintain correct actor names. Otherwise, misnamings can cause bugs.

Figure 14 shows a buggy actor program [Stack Overflow 2018a] with a Misnaming root cause.
Here, the developer intends to configure the server application Server and its server actor db for
the remote communication with the client application Client. Server configures and creates the
system actor system with the name IMDB and the configuration config. IMDB and its actors are
configured to run on a machine with the IP address 127.9.0.1 and at the port 2253. IMDB uses TCP
protocol from Netty’s client-server framework [Netty 2020] for remote messaging. Server creates
the server actor db with the name ImdbActor to reside in the IMDB actor system. Client looks up dbs
using the name AkkaIMDB@127.0.0.1:2552/user/ImdbActor and sends it a message. In this name,
ImdbActor is the name of the server actor that resides in the AkkaIMDB actor system running on a
machine with the IP address 127.9.0.1 and at the port 2552. AkkaIMDB is a user actor. In Akka, the
actorSelection method looks up an actor with a specific name. In Scala, the parseString method
parses a configuration string.
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However, this program is buggy with an
Incorrect Messaging symptom and a Misnam- c1ass DB extends Actor { .. }
. The i £ thi object Server extends App {
mng root cause. € 1mpact of this symptom val config = ConfigFactory.parseString("..remote { ..
is that the Client application cannot com- netty.tcp{ hostname="127.0.0.1" port=2253 }..}..")
municate with the remote Server and its ac- Vai dat‘: - CozftgF:Ctiry &}?:géfonzl?)
. . val system = ActorSystem , data
tor db. The developer explalns this symptom val db = system.actorOf(Props(new DB),"ImdbActor") }
«
as, “when I put the database actor [db] on object Client extends App {
a remote actor system ..., [ have the error vl dbs = system.actorSelection

" (s"IMDB@127.0.0.1:2552/user/ImdbActor")
deadletters encountered” The root cause of (g5 7 messages.set(key , value)).map(..) .. }

this bug is that the developer uses the incor-

rect name for db with the wrong port num-  val dbs = system.actorSelection
ber 2252, instead of 2253. db is not running (s"IMDB@127.0.0.1:2553/user/ImdbActor")
at the port 2253 and thus cannot be looked Fig. 14. Actor bug with Misnaming root cause.
up and the messages sent to it are delivered to /deadLetters. The fix for this bug, as shown in
Figure 14, suggests using the name AkkaIMDB@127.0.0.1:255% user/ImdbActor for dbs, instead of
AkkaIMDB@127.0.0.1:2552/user/ImdbActor. In addition, the program in Figure 2 is another example
of a bug with a Misnaming root cause. Here, the developer attempts to create multiple Worker actors
with the same non-unique name “worker,” which is not allowed.

Actor names with incorrect parental hierarchies, incorrect letter cases for characters, and incor-
rect network protocols are more examples of our Misnaming root cause.

Our Misnaming root cause is new and cannot be found in Hedden and Zhao’s [2018] or Tor-
res Lopez et al.’s [2018] root causes for actor bugs.

5.9 Root Cause 9: Misconfiguration

Misconfiguration is the ninth most common root cause (3.8%) for our actor bugs. The default Akka
configuration [Akka Actor Reference Config 2020] provides a large number of 255 parameters
to configure actors and their dispatching, supervision, shutdown, routing, mailbox, clustering,
remoting, logging, serialization, and deployment. About 42.4% of these parameters need values
of complex data types, such as API class names, values of other configuration parameters, and
arrays of these values. In addition to the default configuration, developers can declare and use their
own custom configurations parameters. There are consistency constraints on the values of these
parameters. For example, a PinnedDispatcher cannot be configured to use an executor that is not a
thread-pool-executor [Akka Actor Reference Config 2020]. Akka developers are responsible to
manually discover and satisfy these constraints. Otherwise, misconfigurations can cause bugs.

Figure 15 shows a buggy actor configuration [Stack Overflow 2014] with a Misconfiguration
root cause. Here, the developer intends to configure the custom dispatcher blocking-dispatcher
and create an actor that uses this dispatcher, in the Main application. In Akka, all actors share
the same default dispatcher, however, a developer can configure and use their own dispatcher.
The configuration file application.conf declares blocking-dispatcher to be a dispatcher of type
PinnedDispatcher with an executor of type thread-pool-executor. The executor maintains a thread
pool with a minimum of 2*2 threads (core-pool-size-min * core-pool-size-factor) and a maxi-
mum of 10*2 (core-pool-size-max * core-pool-size-factor).

However, this configuration is buggy with an Error symptom and a Misconfiguration root
cause. The impact of this symptom is that an actor with the configuration blocking-dispatcher
cannot be created. The developer explains this symptom as, “when I create [an] actor [with
the configuration blocking-dispatcher] I'm getting the exception: Exception in thread 'main’
akka.ConfigurationException: Dispatcher [blocking-dispatcher]” A ConfigurationException is
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thrown when there is a problem with a configuration. The root cause of this bug is that the de-
veloper is not satisfying the consistency constraints for the configuration of PinnedDispatcher.
PinnedDispatcher assigns a single thread to each actor and thus each actor has its own
thread pool with only one thread in it. Therefore, core-pool-size-min, core-pool-size-max, and
core-pool-size-factor should be 1, and not 2, 10, and 2.0. The fix for this bug, as shown in Figure 15,
suggests setting these values to 1.

The configuration in Figure 15 is only a
few lines long, however, it includes 2 consis- .= Z5= 0 RN X
tency constraints that could be violated by the  blocking-dispatcher {
developer, doubling the chances of a Miscon-  type = PinnedDispatcher

ionb The first is th traint executor = "thread-pool-executor"
figuration bug. The first is the constraint on [ o0 " 1 o ecior ¢
the numbers of threads in PinnedDispatcher, | core-pool-size-min = 2
which is already violated. The second is the | core-pool-size-factor = 2.0

. . . core-pool-size-max = 10 } .. }
constraint that a PinnedDispatcher must be object Main extends App { ..

bug

used with a thread-pool-executor, which is ..actorOf (. .withDispatcher("blocking-dispatcher")..)..}
not violated.

. core-pool-size-min = 1
Incorrect configurations of actor systems, X _
core-pool-size-factor = 1

actor mailboxes, and remoting are a few more core-pool-size-max = 1
examples of our Misconfiguration root cause.

Our Misconfiguration root cause is new and
cannot be found in Hedden and Zhao’s [2018] or Torres Lopez et al.’s [2018] root causes for actor
bugs.

Fig. 15. Actor with a Misconfig root cause.

5.10 Root Cause 10: Untyped Communication

Untyped Communication is the least common (1.1%) root cause for our actor bugs. Correct actor
communication requires that a receiver actor knows about the messages that its senders can send.
Classic Akka is untyped and its actors do not know about the type of messages that they may
receive. There is nothing that prevents the sender from sending a message that its receiver cannot
receiver and process [De Koster et al. 2016]. Akka developers are responsible to manually discover
these message types and guarantee that the receiver can receive all the messages that its senders
can send to it. Otherwise, miscommunications can cause bugs.

Figure 16 shows a buggy actor program
[GitHub 2013b] with an Untyped Commu- bug
nication root cause. Here, the developer in- class HttPHostConn?ctor(. .) extends Actor .. { ..

. def receive: Receive = {
tends to receive and process all the messages . request: Httprequest => ..
that can be sent to the HttpHostConnector case Disconnected(..) => ..
actor. HttpHostConnector receives messages  ¢ase Demandidleshutdown => ..} }
of types HttpRequest, Disconnected, and
DemandIdleShutdown to accept a connection
from a client, disconnect the client, and shut
down the service.

However, this program is buggy with an Error symptom and an Untyped Communication root
cause. The impact of this symptom is that HttpHostConnector does not receive and process all the
messages that can be sent to it. The developer explains this symptom as, “DeathPactException in
HttpHostConnector.” An actor throws a DeathPactException when it receives a Terminated message
but cannot process it. A message Terminated is sent to a watcher actor by its watched actor when
the watched actor terminates. HttpHostConnector does not receive and process messages of type

Fig. 16. Actor bug with an Untyped root cause.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 214. Publication date: November 2020.



214:22 Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi Khatchadourian

Terminated that can be sent to it. The fix for this bug, as shown in Figure 16, suggests receiving
and processing Terminated.

There are actor languages and frameworks that are less susceptible to our Untyped Communication
bugs. For example, Akka Typed [2020] is a recent variation of Classic Akka that requires typed
communications and can statically guarantee the absence of our Untyped Communication bugs. In
Classic Akka, the bug in Figure 16 is detected at run time, however, in Akka Typed, this bug can be
detected at compile time.

Our Untyped Communication root cause is new and cannot be found in Hedden and Zhao’s [2018]
or Torres Lopez et al.’s [2018] root causes for actor bugs.

5.11 Implications

Using our new root causes to extend the set of bugs to test for and find Tasharofi et al. [2013]
identify the bug pattern Flexible Interfaces [Torres Lopez et al. 2018] and use it to generate test
schedules for actor software. In this pattern, an actor can dynamically change the set of messages
it receives and processes. The root cause of a bug with this pattern is that a new behavior cannot
processes a message that the previous behaviors of the actor could process. Some of our root
causes overlap with Hedden and Zhao’s [2018] and Torres Lopez et al.’s [2018] root causes for actor
bugs. However, our API Confusion, Model Confusion, Misnaming, Misconfiguration, and Untyped
Communication, that are the root causes for 31.9% of our actor bugs, are new. Both previous and
future actor testing and bug finding tools and techniques can discover the patterns of our new root
causes and use these patterns to extend the set of bugs that they test for to increase the number of
bugs they find. These patterns could include both syntactic and semantic patterns. For example,
29.6% of our Race bugs follow a syntactic pattern in which an entity, such as a future or a scheduled
task, that can run outside and concurrent to an actor, closes over the mutable value of the sender ()
of the actor. Flexible Interfaces pattern is an example of a semantic pattern. Previous work, such as
FindBugs [Hovemeyer and Pugh 2004] for non-actor Java bugs, shows that finding bugs does not
“require sophisticated or extensive forms of analysis” and “many errors can be found with trivial
static examination [of the code]”

Supporting implicit life cycle management and typed communication to prevent bugs
Orleans actor framework [Bernstein et al. 2014] supports more implicit and automatic life cycle
management and is less susceptible to our Explicit Life Cycle bugs. Similarly, Akka Typed [2020]
supports typed communications and is less susceptible to our Untyped Communication bugs. New
variations of Akka can prevent our Explicit Life Cycle and Untyped Communication bugs, that are
13.5% of our actor, by supporting more implicit life cycle and typed communications.

Using the commonality of our bugs to make tradeoff’s between different features Design-
ers of new variations of Akka can use the commonality of our actor bugs, as one of many factors that
they may consider, to make tradeoffs between features that these new variations may support. For
example, the designer can make a tradeoff and choose to support the implicit life cycle management,
that can prevent as much as 12.4% of our actor bugs, over typed communications, that can prevent
only as much as 1.1%.

6 API USAGES

In this section, we answer RQ3 and discuss the usages of Akka API by our actor bugs.

Figure 17 shows the usages of Akka API packages, in a heatmap, where the darker the gray is,
the more the usage is. At the bottom, the figure lists the usage numbers and percentages for used
packages and their classes. The usage for packages and classes that are not listed is zero. For space
reasons, in the heatmap, we shorten the name of a package to its second part. For example, actor is
short for akka.actor.
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According to Figure 17, actor bugs use T BT Jroped 2 L%_(
the following 8 Akka API packages, with 4‘(.,,,,9 =) :
decreasing commonalities:  akka.actor, ] ore
akka.pattern, akka.testkit, akka.event, function metriq__{ ddata | e
akka.serialization, akka.cluster, akka.io, S io
and akka.routing. Among these packages, _im ﬂ{’:ﬁ ‘
akka.actor is the most common package O T jovacs
(81.2%) and akka.routing is the least com- j_J‘:L_. : ottt
mon (0.2%). The usages of packages by = e four Pt sream

actor bugs are dlﬂ:erent and thlS dlﬁerence akku.actar(4972)[81.2%]: ActorRef(188) ActorContext(119) ActorSystem(115)

can be signiﬁcant for some API paCkageS. Props(19) Actor(14) AbstractActor(13) Stash(8) Scheduler(6) AbstractFSM(4)
. . ActorRefFactory(2) ~ TypedActor(2)  ChildRestartStats(1) ~ TypedActorFac-
For example, akka.actor is used 406 times tory(1)  akka.pattern(52)[9.1%]:  AskableActorRef(40)  BackoffSupervi-

more than akka. routing. In addition, 3 most 3G & Tebionetsy TetFVRA) abkaevent11) EventSieamn(t

common packages akka.actor, akka.pattern, akkaserialization(3)[0.5%}: Serilization(3) akka.cluster(2)[0.4%}: Cluster(2)
akka.io(1)[0.2%]: Tep(1) akka.routing(1)[0.2%]: Routing(1)

and akka. testkit, that are only 2.7% of Akka

API packages, are responsible for 97.7% of

usages. These packages provide the basics to configure, create, lookup, reference, schedule, send

and receive messages, supervise, shutdown, and test actors. Packages for untyped actors, such as

akka.actor (81.2%) and akka.cluster (0.4%), are used more than packages for typed actors, such

as akka.actor.typed (0.0%) and akka.cluster.typed (0.0%). Similarly, packages for local actors,

such as akka.actor (81.2%) and akka.routing (0.2%), are used more than packages for remote

actors, such as akka.serialization (0.5%) and akka.remote.routing (0.0%). The testing package

akka.testkit is the third most common package (2.5%).

Our observation about the uncommonality of Akka remote API agrees with Tasharofi et al.’s
[2013] observation that, “most developers use actors to address the local scalability problem, that is,
they use actors as a solution for local concurrent programming [instead of remote programming].”
Tasharofi et al. study fifteen large and mature Scala Akka actor software.

Fig. 17. Akka API usages of actor bugs

6.1 Implications

Targeting less, untyped, and local Akka API packages to scale bug pattern mining to large
APIs in large-scale code bases Previous work [Li and Zhou 2005; Liang et al. 2016] mines non-
actor software code bases to discover their API usage patterns and use these patterns to find
bugs that violate them. For example, for the class ReentrantLock in Java, the invocation of method
unlock() after its lock() is a pattern that if violated can cause multithreaded bugs. One challenge in
these works is to scale the pattern mining to large APIs in large-scale code bases. Similar tools and
techniques can be developed for Akka software, however, they should address a similar challenge.
Designers of these tools and techniques can use our observations about usages of Akka API to
address this challenge. To scale to the large Akka API in large-scale code bases of Akka software,
the designer can focus on only 2.7% of Akka packages, instead of all, that are responsible for 97.7%
of Akka API usages by our actor bugs. Similarly, they can focus on API for untyped actors, instead
of typed actors, and local actors, instead of remote actors.

7 DIFFERENCES

In this section, we answer RQ4 and discuss the differences of our Stack Overflow and GitHub actor
bugs for commonalities and distributions of their characteristics.
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7.1 Symptoms

Figure 18 shows the symptoms of our actor 60
bugs in Stack Overflow and GitHub. According 5
to this figure, the common symptoms of actor
bugs in Stack Overflow and GitHub are differ-
ent. For our Stack Overflow actor bugs, Error
is the most common symptom (40.0%) and In-

Percentages
2

N S
correct Exceptions is the least common (0.0%). In 10 = 3 £
: r=m <
contrast, for our GitHub actor bugs, Unexpected 0 : : L
i A Error Behavior  Messaging Termination Exceptio
Behavior is the most common symptom (53.6%) Symproms

. . B Stack Overflow BGitHub
and Incorrect Exceptions is the least common Fig. 18. Symptoms in Stack Overflow and GitHub.

(3.1%). In addition, the commonalities of some

symptoms are significantly different among our Stack Overflow and GitHub actor bugs. Incorrect
Messaging and Error are 3.6 and 1.5 times more common in Stack Overflow and there is no Incorrect
Exceptions in GitHub. In contrast, Unexpected Behavior and Incorrect Termination are 3.1 and 1.6
times more common in GitHub. Finally, although there is a significant difference between com-
monalities of individual symptoms between our Stack Overflow and GitHub actor bugs, there is no
statistically significant difference among their distributions.

7.2 Root Causes

Figure 19 shows the root causes of actor bugs
in Stack Overflow and GitHub. According
to this figure, the common root causes of
actor bugs in Stack Overflow and GitHub
are different. For our Stack Overflow actor
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Model Confusion are the least common (0.0%).

In addition, the commonalities of some root causes are significantly different among Stack Overflow
and GitHub actor bugs. Logic and Explicit Life Cycle are 18.5 and 1.3 times more common in GitHub.
In contrast, API Confusion, Misnaming, Misconfiguration Messaging Patterns, and Race are 5.2, 3.9,
2.7, 2.2, and 1.3 times more common in Stack Overflow and there is no Programming and Model
Confusion in GitHub. Finally, in addition to the significant differences between commonalities
of individual root causes between Stack Overflow and GitHub actor bugs, there is a statically
significant difference between their distributions.

7.3 APl Usages

Figure 20 shows the usages of Akka API by our actor bugs in Stack Overflow and GitHub. According
to this figure, 3 packages akka.actor, akka.pattern, and akka.testkit are responsible for most
usages in both Stack Overflow (98.6%) and GitHub (94.0%). However, the usages of individual
API packages by Stack Overflow and GitHub actor bugs are different and this difference can be
significant for some packages. Packages akka.pattern and akka.actor are used 2 and 1.1 times more
in Stack Overflow and there is no usage of akka. routing in GitHub. In contrast, akka.serialization,
akka.event, and akka. testkit, are used 9, 4, and 2 times more in GitHub and there is no usage of
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Fig. 20. APl usages in Stack Overflow (left) and GitHub (right).

akka.cluster and akka. io in Stack Overflow. In addition, although there is a significant difference
between usages of individual packages between Stack Overflow and GitHub actor bugs, there is no
statistically significant difference between their distributions.

7.4 Implications

Using characteristics of our Stack Overflow and GitHub actor bugs for predictive bug find-
ing Previous work uses the characteristics of bugs as features to build and train models that can
predict bugs. For example, Zhou et al. [2015] use characteristics, such as root causes and files
involved in the bug, for multithreaded bugs in Mozilla, KDE, and Apache to train a model that
can predict type, locations and quantities of similar bugs in multithreaded software. New bug
prediction tools and techniques can use actor bugs and their characteristics in terms of their root
causes, symptoms, API usages, and their differences as features to build and train models that can
predict similar Akka actor bugs. In addition, our observations about the differences between the
commonalities and distributions of these characteristics can be used to decide which characteristics
should be used as features for a specific dataset. For example, root causes of our Stack Overflow
actor bugs may not be a good feature to train a model that predicts GitHub actor bugs. This is
because of the significant differences between both commonalities and distributions of our Stack
Overflow and GitHub root causes.

8 THREATS TO VALIDITY

Using tags, keywords, and maturity criteria to identify Akka questions and answers in Stack
Overflow and mature projects in GitHub could be a threat. This is because these may not identify a
complete set of Akka questions and answers and commits or identify irrelevant ones. To minimize
this threat, we closely follow the best practices of previous work in using tags [Ahmed and
Bagherzadeh 2018; Bagherzadeh and Khatchadourian 2019; Islam et al. 2019, 2020; Meng et al. 2018;
Yang et al. 2016], keywords [Casalnuovo et al. 2015; Islam et al. 2019, 2020; Kim and Whitehead
2006; Ray et al. 2016], and maturity criteria [Biswas et al. 2019; Gu et al. 2016; Nadi et al. 2016].
Additionally, we manually analyze each candidate question and answer and commit and discard
irrelevant ones.

Using Stack Overflow and GitHub as the sources for actor bugs is another threat. This is because
they may not include a representative set of actor bugs. However, the large numbers of questions
and answers and developers in Stack Overflow and projects, commits, and developers in GitHub
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helps to mitigate this threat. Furthermore, unlike some previous studies that use only Stack Overflow
[Ahmed and Bagherzadeh 2018; Bagherzadeh and Khatchadourian 2019; Barua et al. 2014; Rosen
and Shihab 2016; Yang et al. 2016] or GitHub [Hedden and Zhao 2018], we use both. The manual
identification of actor bugs and fixes, their symptoms, root causes, API usages, and classifications
could be another threat. To minimize this threat, we closely follow the best practices of previous
work in using open card sort [Ahmed and Bagherzadeh 2018; Bagherzadeh and Khatchadourian
2019; Islam et al. 2019; Nadi et al. 2016]. In addition, our manual analyses use all the available
information for an Stack Overflow candidate question bug, including its question, all its answers
and comments, and for a GitHub candidate commit bug, including its message, original code,
modified code, issue reports, and pull requests. Multiple authors with extensive expertise in actor
and multithreaded concurrency performed the manual analysis, where they iterated and refined
their results until in agreement.

The complexity of concurrency bugs—and its impact on their understanding, reporting, finding,
and fixing—may be considered a threat. Simpler bugs are more likely to be understood and reported
and easier to find and fix [Bron et al. 2005; Yu 2013]. Moreover, there could be bugs that are rarely
or never reported, found, and fixed [Zhou et al. 2015]. To mitigate this threat, we closely follow the
best practices of previous work [Bhattacharya et al. 2012; Hedden and Zhao 2018; Lu et al. 2008; Tu
et al. 2019] in studying only the bugs that developers have found and fixed. Like other empirical
studies, our findings should be interpreted with our methodology in mind and understood to hold
only for Akka actor bugs written in Scala or Java from Stack Overflow and GitHub.

9 RELATED WORK

Actor concurrency bugs The most related to our work are the works by Hedden and Zhao [2018]
and Torres Lopez et al. [2018]. Section 5 discusses these works and their overlaps with our work
in detail. To summarize, Hedden and Zhao study 126 Akka actor bugs in twelve projects from
Scalalndex, classify their root causes into three categories and ten subcategories, and compare
their actor bugs with cloud bugs. Our following root causes overlap with several of their root
causes, with their root causes in parentheses: Logic (Logic), Race (Message Order, Operation Order,
Cooperation), Explicit Life Cycle (Creation, Shutdown, Recovery), Programming (Logic), and Messaging
Patterns (Response). However, our four root causes API Confusion, Model Confusion, Misnaming,
Misconfiguration, and Untyped Communication, that are root causes for 31.9% of our actor bugs,
are new. Similarly, Torres Lopez et al. study twenty-three actor bugs in various actor models from
eleven previous works and classify their root causes into two categories and six subcategories,
and provide a list of static analyses, testing, debugging, and visualization tools that address these
bugs. Our following root causes overlap with several of their root causes, with their root causes in
parentheses: Race (Bad Message Interleaving, Memory Inconsistency). However, our nine root causes,
i.e., Logic, API Confusion, Explicit Life Cycle, Programming, Model Confusion, Misnaming, Untyped
Communication, accounting for 85.4% of our actor bugs, are new.

Verification of actor concurrency For verification, Gordon [2019] proposes a program logic
with modal assertions for deductive reasoning and verification of safety properties of actor programs
in a core actor calculus. Charalambides et al. [2019] propose a typestate system for static reasoning
of liveness properties in a restricted class of actor programs written in a simple actor language.
Khatchadourian et al. [2019] use typestate to efficiently and safely parallelize streams, another form
of reactive programming. Bagherzadeh and Rajan [2017] propose order types for static reasoning
and detection of message race bugs. Haller and Loiko [2016] propose a type system to control
aliasing in Scala actor software. Bagherzadeh and Rajan [2015] propose an interference-aware
programming model to allow for modular reasoning and guarantee the absence of data races in
Panini asynchronous message passing concurrency [Rajan 2015]. Khatchadourian et al. [2008]
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also allow modular reasoning but for Aspect-Oriented Programming (AOP) using rely-guarantee
clauses similar to those used for concurrent systems. Negara et al. [2011] proposes a static analysis
to infer and guarantee the single ownership property for actors. Clebsch et al. [2015] use reference
capabilities to guarantee the absence of data races in the combination of actor and multithreaded
concurrency. Colaco et al. [1997] proposes a type inference system to prevent orphan messages in
a primitive actor calculus. D’Osualdo et al. [2013] propose an infinite-state model checker for a
core fragment of Erlang actor concurrency. Stiévenart et al. [2017] propose a mailbox abstraction
to statically reason about the bounds on the sizes for mailboxes.

Testing and debugging of actor concurrency Lauterburg et al. [2009] propose Basset for
systematic exploration of message schedules for given inputs. Tasharofi et al. [2013] propose Bita to
explore message schedules for given inputs using different message coverage criteria. Tasharofi et al.
[2012] also propose TransDPOR, a dynamic partial order reduction technique to reduce the state-
space of message schedules. Li et al. [2018] propose Tap, a technique to generate system-level test
cases for a given code location in Akka software. Sen and Agha [2006] propose dCute, a full coverage
testing system to find deadlocks. For debugging, Lopez et al. [2019] propose Multiverse Debugging
to allow for observation and debugging of all concurrent execution paths in AmbientTalk, an actor
language for mobile adhoc networks.

Multithreaded concurrency bugs Lu et al. [2008] study 105 local concurrency bugs in 4
server and client applications and classify their patterns, manifestation, fixing, and avoidance
strategies. Leesatapornwongsa et al. [2016] study 104 distributed concurrency bugs in 4 popular
data center systems and classify their triggers, behaviors, and fixes. Gunawi et al. [2014] study
3,655 distributed concurrency issues in 6 popular cloud systems and classify their vitality, aspects,
hardware, hardware failure mode, software, implications, and scope. Wang et al. [2017] study
57 concurrency bugs in 53 open-source Node.js software and classify their root causes, patterns,
impacts, manifestation, and fix strategies. Khatchadourian et al. [2020] also report on API misuse
for Java streams.

Unlike works that focus on the classification of root causes of actor bugs alone, verification,
testing, and debugging of actor software, or analysis and classification of multithreaded concurrency
bugs, our work focuses on classifying symptoms, root causes, API usages, and differences for 186
real-world Akka actor bugs from Stack Overflow and GitHub and discussing real-world examples
of bugs with these root causes and symptoms and how developers discuss them.

10  CONCLUSIONS AND FUTURE WORK

In this work, we construct and study a set of 186 real-world Akka actor bugs and their fixes from
Stack Overflow and GitHub, understand and classify their symptoms, root causes, API usages, and
differences, discuss real-world examples of actor bugs with these symptoms and root causes, inves-
tigate the relation of our findings with the findings of previous work, and discuss the implications
of our findings. One avenue of the future work is to analyze and classify fixes of our actor bugs.
Another avenue is to analyze our actor bugs to identify the challenges in their detection and fixing.
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