
What Do Concurrency Developers Ask About?
A Large-scale Study Using Stack Overflow
Syed Ahmed

Oakland University, USA
sfahmed@oakland.edu

Mehdi Bagherzadeh
Oakland University, USA

mbagherzadeh@oakland.edu

ABSTRACT
Background Software developers are increasingly required to
write concurrent code. However, most developers find concurrent
programming difficult. To better help developers, it is imperative to
understand their interest and difficulties in terms of concurrency
topics they encounter often when writing concurrent code.

Aims In this work, we conduct a large-scale study on the textual
content of the entirety of Stack Overflow to understand the interests
and difficulties of concurrency developers.

Method First, we develop a set of concurrency tags to extract
concurrency questions that developers ask. Second, we use latent
Dirichlet allocation (LDA) topic modeling and an open card sort
to manually determine the topics of these questions. Third, we
construct a topic hierarchy by repeated grouping of similar topics
into categories and lower level categories into higher level cate-
gories. Fourth, we investigate the coincidence of our concurrency
topics with findings of previous work. Fifth, we measure the pop-
ularity and difficulty of our concurrency topics and analyze their
correlation. Finally, we discuss the implications of our findings.

Results A few findings of our study are the following. (1) De-
velopers ask questions about a broad spectrum of concurrency
topics ranging from multithreading to parallel computing, mobile
concurrency to web concurrency and memory consistency to run-
time speedup. (2) These questions can be grouped into a hierar-
chy with eight major categories: concurrency models, programming
paradigms, correctness, debugging, basic concepts, persistence, perfor-
mance and GUI. (3) Developers ask more about correctness of their
concurrent programs than performance. (4) Concurrency questions
about thread safety and database management systems are among
the most popular and the most difficult, respectively. (5) Difficulty
and popularity of concurrency topics are negatively correlated.

Conclusions The results of our study can not only help concur-
rency developers but also concurrency educators and researchers
to better decide where to focus their efforts, by trading off one
concurrency topic against another.

CCS CONCEPTS
• General and reference → Empirical studies; • Theory of
computation → Concurrency;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEM ’18, October 11–12, 2018, Oulu, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5823-1/18/10. . . $15.00
https://doi.org/10.1145/3239235.3239524

KEYWORDS
Concurrency topics, concurrency topic hierarchy, concurrency
topic difficulty, concurrency topic popularity, Stack Overflow

ACM Reference Format:
Syed Ahmed and Mehdi Bagherzadeh. 2018. What Do Concurrency Devel-
opers Ask About? A Large-scale Study Using Stack Overflow . In ACM /
IEEE International Symposium on Empirical Software Engineering and Mea-
surement (ESEM) (ESEM ’18), October 11–12, 2018, Oulu, Finland. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3239235.3239524

1 INTRODUCTION
Software developers are increasingly required to write concurrent
code to satisfy both functional and nonfunctional requirements of
their software. For example, software with a graphical user inter-
face must be concurrent in order to satisfy a functional requirement
that the software should be able to display more than one window
at a time. Similarly, software with performance requirements must
be concurrent in order to satisfy a nonfunctional requirement that
the software should support better performance. Software is con-
current if its different computations can potentially run at the same
time and otherwise is sequential. However, most developers think
sequentially [19] and find concurrent programming difficult.

To better help developers with concurrent programming, it is
imperative to understand their interests and difficulties in terms
of the concurrency topics they encounter often when writing con-
current code and their difficulties when working with these topics.
Such understanding not only can help concurrency developers but
also education, development and research communities that sup-
port these developers to better decide when and where to focus
their efforts [2, 5, 7, 23, 24, 28, 31, 34]. Without such understanding,
developers may not prepare themselves for similar difficulties, edu-
cators may develop the wrong educational material and researchers
may make incorrect assumptions.

With more than three million developer participants, thirty eight
million question and answer posts in two billion words, Stack Over-
flow [30] has become a large and popular knowledge repository
for developers to post questions, receive answers and learn about a
broad range of topics. This makes Stack Overflow a great source to
learn about developers’ interests and difficulties [5, 7, 24, 25, 28, 34].

To understand interests and difficulties of concurrency develop-
ers, we conduct a large-scale study on the textual content of the
entirety of Stack Overflow to answer these research questions:

• RQ1. Concurrency topics What concurrency topics do de-
velopers ask questions about?

• RQ2. Topic hierarchy What categories do these concur-
rency topics belong to? What does the hierarchy of these
concurrency topics look like?

https://doi.org/10.1145/3239235.3239524
https://doi.org/10.1145/3239235.3239524

ESEM ’18, October 11–12, 2018, Oulu, Finland Syed Ahmed and Mehdi Bagherzadeh

• RQ3. Popularity What topics are more popular among con-
currency developers?

• RQ4. Difficulty What topics are more difficult to success-
fully find answers to their questions?

• RQ5. Correlation What popular concurrency topics are
more difficult? How do popularity and difficulty of concur-
rency topics correlate?

To answer these questions, we take the following major steps.
First, we develop a set of concurrency tags to identify and extract
concurrency questions that developers ask on Stack Overflow. Sec-
ond, we use latent Dirichlet allocation (LDA) [9] topic modeling and
an open card sort [11] to manually determine the topics of these
questions using their textual contents. Third, we construct a topic
hierarchy by repeated grouping of similar topics into categories
and lower level categories into higher level categories. Fourth, we
investigate the coincidence of our concurrency topics with findings
of previous work. Fifth, we measure the popularity and difficulty of
our concurrency topics using several well-known metrics used by
previous work [5, 7, 22, 28, 28, 31, 34] and analyze their correlation.
Finally, we discuss the implications of our findings for concurrency
developers, educators and researchers.

A few findings of our study are the following. Concurrency
topics: (1) Developers ask questions about a broad spectrum of
concurrency topics ranging frommultithreading to parallel comput-
ing, mobile concurrency to web concurrency and memory consistency
to runtime speedup. Topic hierarchy: (2) These questions can be
grouped into a hierarchy with eight major categories: concurrency
models, programming paradigms, correctness, debugging, basic con-
cepts, persistence, performance and GUI. (3) Developers ask more
about correctness of their concurrent programs than performance.
(4) Our concurrency topics and categories coincide with several
findings of previous work by Pinto et al. [25], Barua et al. [7], Rosen
and Shihab [28] and Lu et al. [19], among others. Popularity & dif-
ficulty and their correlation: (5) Concurrency questions about
thread safety and database management systems are among the
most popular and the most difficult, respectively. (6) Difficulty and
popularity of concurrency topics are negatively correlated.

Our dataset is available at https://goo.gl/uYCQPU.

2 METHODOLOGY
Figure 1 shows an overview of the methodology used to study inter-
ests and difficulties of concurrency developers on Stack Overflow.

Step ❶: Download Stack Overflow dataset In the first step of
our analysis, we download the Stack Overflow dataset which is
publicly available through Stack Exchange Data Dump [29]. The
dump includes a large set S of question and answer posts with a set
of data for each post. Among others, the data for a post includes its
identifier, its type (question or answer), title, body, tags, creation
date, view count, score, favorite count and the identifier of the
accepted answer for the post if the post is a question. An answer to
a question is accepted if the contributor who posted the question
marks it as accepted. Our dataset includes 38,485,046 questions
and answers posted over a time span of over 9 years from August
2008 to partway through December 2017 by 3,589,412 developer
participants of Stack Overflow. Among these posts 14,995,834 (39%)

determine popularity/difficulty correlation

download Stack Overflow dataset

preprocess concurrency posts

determine topic popularity RQ3

determine topic difficulty

LDA
use

1

3

4

5

8

7

RQ1

RQ59

identify/extract concurrency posts

infer & label topics

RQ4

construct topic hierarchy RQ26

2 develop set of concurrency tags

Figure 1: Overview of ourmethodology to study interest and
difficulties of concurrency developers using Stack Overflow.

are questions and 23,489,212 (61%) are answers of which 8,034,235
(21%) are marked as accepted answers.

Step ❷: Develop concurrency tag set We consider a post as a
concurrency post if it has a concurrency tag. To develop a set of
concurrency tags we take the following steps. First, we manually
inspect Stack Overflow’s top 100 most used tags and select its
concurrency-related tags to form the initial set T0 of concurrency
tags. T0 includes a single tag “multithreading” [19, 25]. Second,
we go through the Stack Overflow dataset S and extract questions
P whose tags contain a tag from T0. The set P includes 103,747
questions. Third, we extract tags of the posts in P to form the set
of candidate concurrency tags T. Finally, we use two heuristics α
and β to refine T by keeping tags that are significantly relevant to
concurrency and excluding others. The heuristic α measures the
relevance of a tag t in T to concurrency.

α =
number of posts with tag t in P

number of posts with tag t in S

Similarly, the heuristic β measures the significance of a tag t in T.

β =
number of posts with tag t in P

number of posts in P

We consider a tag t to be significantly relevant to concurrency if
its α and β values are higher than or equal to specific thresholds.
Our experiments using a broad range of thresholds for α and β
show that α = 0.1 and β = 0.01 allows for a significantly relevant
set of concurrency tags. With these threshold values the set T of
our concurrency tags becomes

T= { concurrency locking multiprocessing multithreading mutex
parallel-processing pthreads python-multithreading
synchronization task-parallel-library thread-safety threadpool }

Note that after refinement, the concurrency tag set T includes tags
like “concurrency”. Also, using T to identify concurrency posts
does not prevent a concurrency post to also have tags, such as
“asynchronous”, that are not explicitly in T1. Our threshold values
are consistent in range with thresholds used by previous work
1 To illustrate, our set C of concurrency posts, with tags T, includes questions with
“asynchronous” tag. In addition, topics such as task parallelism and mobile concurrency
in Table 1 cover posts related to asynchrony.

https://goo.gl/uYCQPU

What Do Concurrency Developers Ask About? ESEM ’18, October 11–12, 2018, Oulu, Finland

Table 1: Concurrency tags for select relevance and significance threshold values. Our concurrency tag set T is in gray.
(α, β) Set of tags No.
(0.3, 0.015) concurrency multithreading pthreads thread-safety threadpool 5
(0.3, 0.01) concurrency multithreading mutex pthreads python-multithreading thread-safety threadpool 7
(0.3, 0.005) backgroundworker concurrency executorservice multithreading mutex pthreads python-multithreading runnable semaphore synchronized

thread-safety threadpool
12

(0.2, 0.015) concurrency locking multithreading pthreads synchronization thread-safety threadpool 7
(0.2, 0.01) concurrency locking multithreading mutex pthreads python-multithreading synchronization task-parallel-library thread-safety threadpool 10
(0.2, 0.005) atomic backgroundworker concurrency deadlock executorservice grand-central-dispatch locking multithreading mutex openmp pthreads

python-multithreading runnable semaphore synchronization synchronized task-parallel-library thread-safety threadpool wait
20

(0.1,0.015) concurrency locking multithreading parallel-processing pthreads synchronization thread-safety threadpool 8
(0.1, 0.01) concurrency locking multiprocessing multithreading mutex parallel-processing pthreads python-multithreading synchronization task-

parallel-library thread-safety threadpool
12

(0.1, 0.005) atomic backgroundworker concurrency deadlock executorservice grand-central-dispatch locking multiprocessing multithreading mutex
openmp parallel-processing pthreads python-multithreading queue runnable semaphore synchronization synchronized task task-parallel-
library thread-safety threadpool wait

24

(0.05, 0.015) asynchronous c++11 concurrency locking multithreading parallel-processing pthreads sockets synchronization thread-safety threadpool 11
(0.05, 0.01) android-asynctask asynchronous boost c++11 concurrency locking multiprocessing multithreading mutex parallel-processing pthreads

python-multithreading sockets synchronization task-parallel-library thread-safety threadpool timer
18

(0.05, 0.005) android-asynctask async-await asynchronous atomic backgroundworker boost c++11 concurrency deadlock executorservice grand-central-
dispatch locking multiprocessing multithreading mutex openmp parallel-processing process pthreads python-multithreading queue
runnable semaphore sockets synchronization synchronized task task-parallel-library thread-safety threadpool timer wait

32

[7, 34]. Rosen and Shihab [28] and Yang et al. [34] use similar
approaches to develop their set of security and mobile tags. Table 1
shows the set of concurrency tags for a select set of threshold values
for α and β with T in gray.

Step ❸: Extract concurrency posts After developing the set of
concurrency tags T, we extract Stack Overflow posts whose tag set
contains a tag in T. This set includes 156,777 question and 249,662
answer posts of which 88,764 (36%) are accepted answers. To reduce
noise, following previous work [7, 28], we add questions and their
accepted answers from this set to the set of concurrency post C
and discard unaccepted answers. C includes 156,777 questions and
88,764 accepted answers, i.e. 245,541 posts in total.

Step ❹: Preprocess concurrency posts We preprocess the set
of concurrency posts C to reduce the noise [7, 34] for the next steps
of the analysis, by taking the following actions. First, we remove
code snippets, enclosed in ⟨code⟩, HTML tags, such as ⟨p⟩ and ⟨/p⟩,
stop words, such as “a”, “the” and “is” and numbers, punctuation
marks, non alphabetical characters and URLs. Second, we reduce
words to their base representations. For example “reading”, “read”
and “reads” all reduce to their base “read”. For stop words and word
reduction we use MALLET’s [27] list of stop words and Porter
stemming algorithm [27], respectively.

Step ❺: Infer and label topics After preprocessing, we use
latent Dirichlet allocation (LDA) [9] to automatically infer topics
through an unsupervised topic modeling of textual contents of
concurrency posts C. In a topic model, a document is a probabilis-
tic distribution of topics where the topic itself is a probabilistic
distribution of words. A topic is a set of frequently co-occurring
words that approximates a real-world concept. In our analysis, a
document is a question or an answer post. A document can have
multiple topics that cover various proportions of the document and
a topic can span over multiple documents. To illustrate, the set of co-
occurring words {task, execute, async, complete, run, cancel ,wait ,
asynchronous, parallel , schedule} is a topic that approximates the

“task parallelism” concept. Task parallelism is a concurrent pro-
gramming model that allows partitioning a computation into tasks,
assigning tasks to concurrently running threads/processes for exe-
cution and collecting tasks’ results with their completion.

Several implementations of LDA are available. We use MALLET
[21] to train a topic model with K topics and I iterations using
standard values 50/K and 0.01 for MALLET’s hyperparameters,
following previous work [5, 7, 8, 28, 34]. Our experiments with a
broad range of values show that K = 30 and I = 1, 000 allows for
the inference of sufficiently granular topics. To produce the model,
we treat each individual question post and accepted answer post as
an individual document. MALLET processes 245,541 documents.

Topic inference produces a set of words as topics and their pro-
portions. However, the inference cannot automatically assign name
labels to these topics. Following previous work [5, 7, 22, 28, 34], we
use an open card sort [11] to assign a label to a topic word set w
by manually inspecting the top 20 words inw and reading through
15 random posts withw as their dominant topic word set. A topic
is the dominant topic of a document if the proportion of the doc-
ument that the topic covers is higher than proportions that other
topics of the document cover. In an open sort, the sorting begins
with no predefined categories and participants develop their own
categories. The two authors individually assigned topics to word
sets, reiterated and refined topics as necessary, and then mutually
agreed on a final set of topics. The second author is a Program-
ming Languages professor with extensive expertise in concurrent
and event-based systems and the first author is a graduate student
with coursework in concurrent and distributed systems. During
topic labeling, we merged two pairs of topics because they had
sufficiently similar keywords and questions. Pairs are merged into
object-oriented concurrency and basic concepts topics. We removed
one unrelated topic that is about synchronization between local
and remote repositories in version control systems such as Git and
is not about concurrency. The initial level of inter-rater agreement,

ESEM ’18, October 11–12, 2018, Oulu, Finland Syed Ahmed and Mehdi Bagherzadeh
Table 2: Names, categories (separated by \) and top 10 words (stemmed) for our concurrency topics of Stack Overflow.

No. Topic name Category Topic words
1 basic concepts basic concepts code question work answer understand read find edit issu make

2 task parallelism concurrency models task execut async complet run cancel wait asynchron parallel schedul

3 producer consumer concurrency concurrency models queue messag consum produc process item buffer block wait empti

4 parallel computing concurrency models parallel node loop comput calcul openmp result algorithm mpi function

5 process life cycle management multiprocessing\concurrency models process child parent termin exit fork creat kill share start

6 python multiprocessing multiprocessing\concurrency models python script run multiprocess process function modul command parallel php

7 thread life cycle management multithreading\concurrency models thread main creat run start execut background separ join finish

8 thread sharing multithreading\concurrency models function variabl pass call pointer pthread argument type return global

9 thread scheduling multithreading\concurrency models loop time wait stop run start sleep set check finish

10 thread pool multithreading\concurrency models worker pool job number work process task creat limit threadpool

11 concurrent collections correctness list arrai map element collect iter number item kei add

12 thread safety correctness thread java safe multipl multi multithread concurr singl implement applic

13 locking correctness lock mutex wait condit releas semaphor acquir deadlock synchron resourc

14 memory consistency correctness read memori write variabl oper atom cach share synchron access

15 entity management persistence concurr session spring entiti transact actor collect updat model version

16 database management systems persistence databas tabl queri updat row record lock insert sql transact

17 file management persistence file read write log line open stream directori folder text

18 object-oriented concurrency programming paradigms object class method instanc creat static access refer variabl synchron

19 web concurrency programming paradigms request servic web server applic user app net respons http

20 event-based concurrency programming paradigms event signal handler timer callback call handl fire receiv slot

21 mobile concurrency programming paradigms android imag app activ game view updat frame asynctask devic

22 client-server concurrency programming paradigms server client connect send socket messag receiv data port read

23 data scraping performance data time problem load download work page structur solut url

24 runtime speedup performance time core cpu run perform memori number system process machin

25 unexpected output debugging code program work run output problem print line result function

26 irreproducible behavior debugging error test code run problem applic issu window compil crash

27 GUI GUI updat form gui window applic button control user progress click

before reiterations and refinements, using Cohen’s kappa score was
0.659 (moderate agreement).

Table 2 shows the inferred top 10 words that describe a topic, in
the column topic words, and its manually assigned topic name, in
the column topic name, for each topic of our 27 concurrency topics.

This table shows stemmed topic words that are reduced to their
base using the Porter stemming algorithm [27].

Step ❻: Construct topic hierarchy We construct the topic
hierarchy by repeated grouping of similar topics into categories
and lower level categories into higher level categories.

What Do Concurrency Developers Ask About? ESEM ’18, October 11–12, 2018, Oulu, Finland

Table 2 and Figure 3 show the textual and pictorial represen-
tations of the topic hierarchy. To illustrate, thread life cycle man-
agement and thread scheduling topics are grouped into a lower
level category called multithreading where multithreading itself is
grouped into a higher level category called concurrency models. The
higher level category concurrency models includes other categories
such as multiprocessing and parallel computing.

Step ❼: Determine topic popularity We measure the popular-
ity of a concurrency topic using three metrics, used by previous
work. The first metric is the average number of views for questions
with the topic as their dominant topic [5, 22, 28, 34]. This metric
includes views by both registered users and visitors of Stack Over-
flow. The inclusion of visitors’ views is important because in Stack
Overflow there are many more visitors than there are registered
users [20]. The second metric is the average number of questions
of the topic marked as favorite by users [5, 22, 25, 34]. The third
metric is the average score of questions of the topic [5, 22, 25, 34].
Intuitively, a topic with higher number of views and favorites and
a higher score is more popular.

Table 3 shows popularity measurements of concurrency topics.
Step ❽: Determine topic difficulty We measure the difficulty

of a concurrency topic using two metrics, used by previous work.
The first metric is the percentage of questions of the topic that
have no accepted answers [28, 31, 34]. And the second metric is the
average median time needed for a question to receive an accepted
answer [28, 34]. Intuitively, a topic with higher chance of its ques-
tions not receiving accepted answers or taking longer to receive
accepted answers is more difficult.

Table 4 shows difficulty measurements of concurrency topics.
Step ❾: Determine correlations After determining popularity

and difficulty, we use Kendall correlation tests to identify correla-
tions, if any, between the three popularity metrics and two difficulty
metrics of our concurrency topics.

In this paper, the popularity and difficulty of our concurrency
topics are bound by their corresponding metrics defined in steps 7
and 8, which are different from other notions of difficulty [15].

3 RESULTS
In this section, we present and discuss the results of our study for
research questions RQ1-RQ5. We also investigate the coincidence
of our results with findings of relevant previous works.

3.1 RQ1: Concurrency Topics
Topics of concurrency questions that developers ask on Stack Over-
flow are determined using LDA topic inference and topic labeling,
as discussed in Section 2. Table 2 shows these concurrency topics.

As Table 2 shows, developers ask questions about a broad spec-
trum of concurrency topics ranging from thread pool to parallel
computing, mobile concurrency to web concurrency and memory
consistency to runtime speedup.

Themeaning of these concurrency topicsmay be best understood
by looking at questions that developers ask about in each of these
topics. To illustrate, the following is a question in the thread pool
topic in which the developer is asking how to implement a thread
pool where the size of the thread pool can change based on its
number of jobs. The Stack Overflow identifier for this question

8.
1%

7.
6

6.
0

5.
9

5.
5

4.
9

4.
6

4.
6

4.
2

4.
1

3.
9

3.
9

3.
6

3.
1

3.
0

2.
9

2.
8

2.
8

2.
7

2.
7

2.
6

2.
6

1.
8

1.
8

1.
6

1.
5

1.
3%

0

2

4

6

8

10

12

ba
si

c
co

nc
ep

ts
ob

je
ct

-o
ri

en
te

d
co

nc
un

ex
pe

ct
ed

 o
ut

pu
t

th
re

ad
 li

fe
 c

yc
le

 m
gm

t
G

U
I

ir
re

pr
od

uc
ib

le
 b

eh
av

io
r

th
re

ad
 s

ch
ed

ul
in

g
m

ob
il

e
co

nc
ru

nt
im

e
sp

ee
du

p
cl

ie
nt

-s
er

ve
r

co
nc

pa
ra

lle
l c

om
pu

ti
ng

w
eb

 c
on

cu
rr

en
cy

da
ta

ba
se

 m
gm

t s
ys

te
m

th
re

ad
 s

af
et

y
lo

ck
in

g
th

re
ad

 s
ha

ri
ng

co
nc

ur
re

nt
 c

ol
le

ct
io

ns
py

th
on

 m
ul

tip
ro

ce
ss

in
g

fi
le

 m
an

ag
em

en
t

ta
sk

 p
ar

al
le

lis
m

m
em

or
y

co
ns

is
te

nc
y

da
ta

 s
cr

ap
in

g
th

re
ad

 p
oo

l
pr

od
uc

er
-c

on
su

m
er

 c
on

c
en

tit
y

m
gm

t
pr

oc
es

s
lif

e
cy

cl
e

m
gm

t
ev

en
t-

ba
se

d
co

ncqu
es

ti
on

 p
os

ts
 (

th
ou

sa
nd

s)

topics

average

Figure 2: Concurrency topics with individual numbers, aver-
age number (dashed line) andpercentages of their questions.

is 11249342 and it can be accessed at https://stackoverflow.com/
questions/11249342.

Q.11249342 Creating a dynamic (growing/shrinking)
thread pool I need to implement a thread pool in Java
(java.util.concurrent) whose number of threads is at some min-
imum value when idle, grows up to an upper bound (but never
further) when jobs are submitted into it faster than they finish
executing, and shrinks back to the lower bound when all jobs are
done . . . How would you implement something like that? ..
Similarly, the following is a question in the web concurrency

topic in which the developer is asking how to send emails using
background threads in their web application where the background
thread prevents blocking of the main thread and therefore does
not force the user to wait until the email is sent. Classic ASP is a
scripting language to write server side web applications.

Q.17052243 How to perform multithreading/background
process in classic ASP I need to send emails via a background
job on a classic-ASP app so the user doesn’t have to wait for a
slow webserver to complete sending the email. I know I can use
Ajax to generate two separate requests, but I’d rather not require
Javascript. Plus, I suspect there’s a better way to pull this off.
Ideas?
Finally, the following is a question in basic concepts topic that

asks about basic motivations behind the need for concurrency.
Q.541344 What challenges promote the use of paral-
lel/concurrent architectures? However, I am so used to think-
ing about solutions in a linear/serial/OOP/functional way that I
am struggling to cast any of my domain problems in a way that
merits using concurrency.
Before proceeding to the next research question, we examine

the number of questions that developers ask for concurrency top-
ics. Figure 2 shows the number of questions for these topics and
their percentages. As Figure 2 shows, the numbers of questions that
developers ask in different concurrency topics are not uniform. De-
velopers ask the most number of questions (8%) about basic concepts
which is inline with the general understanding that concurrency
remains difficult for developers and they still ask questions about
its basics. Developers ask the least number of questions (1%) about
event-based concurrency.

Pinto et al. [25] study the 250 most popular concurrency ques-
tions on Stack Overflow. Our observation that the concurrency

https://stackoverflow.com/questions/11249342
https://stackoverflow.com/questions/11249342

ESEM ’18, October 11–12, 2018, Oulu, Finland Syed Ahmed and Mehdi Bagherzadeh

Figure 3: Hierarchy of concurrency topics with concurrency
topics in gray and their categories in white.

topic basic concepts has the most number of questions coincides
with Pinto et al.’s observation that “most of them [questions] are
related to basic concepts”.

Finding 1: Developers ask questions about a broad spectrum
of concurrency topics ranging from thread pool to parallel com-
puting, mobile concurrency to web concurrency and memory
consistency to runtime speedup.

Finding 2: Developers ask the most (8%) about basic concepts,
inline with the general understanding that concurrency re-
mains difficult for developers and they still ask questions about
its basics.

3.2 RQ2: Topic Hierarchy
A hierarchy for concurrency topics that developers ask questions
about on Stack Overflow is constructed by repeated grouping of
similar topics into categories and lower level categories into higher
level categories, as described previously.

Figure 3 shows the hierarchy of concurrency topics with con-
currency topics in gray and concurrency categories in white. The
inner levels of the hierarchy are its higher levels and the hierarchy
expands outwards to lower level categories and concurrency topics
at the outermost level. Figure 3 also shows percentages for number
of questions a lower level topic/category contributes to its higher
level category.

As Figure 3 shows, the questions that developers ask about con-
currency can be grouped into a hierarchy with eight high level

categories: concurrency models, programming paradigms, correct-
ness, debugging, basic concepts, persistence, performance and GUI.
In addition, the number of questions that developers ask in each
category is not uniform. Developers ask the most questions (28%)
about the concurrency models category and the least (5%) about GUI.
In addition, developers ask more questions (12%) about correctness
of their concurrent programs than their performance (7%). This is
inline with the general tradeoff between performance advantages
of concurrency and its correctness issues [3, 4, 16, 18].

Finding 3: Questions that developers ask about concurrency
can be grouped into eight major categories: concurrency models,
programming paradigms, correctness debugging, basic concepts,
persistence, performance and GUI.

Finding 4: Developers ask the most (28%) about concurrency
models and the least (5%) about GUI.

Finding 5: Developers ask more (12%) about concurrency cor-
rectness than performance (7%), inline with the tradeoff between
concurrency’s performance benefits and correctness issues.

We continue this section by a detailed discussion of concurrency
categories and their constituent topics and their coincidence with
relevant previous works.

3.2.1 Concurrency models. Concurrency models are mainly con-
cerned about concurrency abstractions (e.g. threads and processes)
and execution models (e.g. multicore and single core executions).
The concurrencymodels category includes five lower level categories
among which multithreading alone contains more than half of the
questions that developers ask in this category. This is inline with the
general understanding that multithreading is the defacto dominant
concurrency model. Developers ask the most (54%) about multi-
threading and the least (6%) about producer consumer concurrency
when asking questions about concurrency models.

Inmultithreading, developers ask questionswith titles like (thread
life cycle management):“How to safely destruct Posix thread pool
in C++?” and (thread pool):“Is there a way to create a pool of pools
using the Python workerpool module?”. Whereas producer consumer
concurrency includes question with titles like “producer Consumer
with BlockingQueues in Java EE as background task”. The name
inside parentheses is the concurrency topic of the question.

Pinto et al. [25] categorize the 250 most popular concurrency
questions into several concurrency themes. Our multithreading
category and its thread life cycle management topic coincide with
their threading and thread life cycle themes. Rosen and Shihab [28]
study and categorize Stack Overflow questions related to mobile
development into several mobile topics including threading. Our
multithreading category coincides with their mobile threading topic.

Finding 6: Developers ask the most (54%) about multithread-
ing when asking about concurrency models, inline with the
general understanding that multithreading is the defacto domi-
nant concurrency model. Developers ask the least (6%) about
producer consumer concurrency.

What Do Concurrency Developers Ask About? ESEM ’18, October 11–12, 2018, Oulu, Finland

3.2.2 Programming paradigms. Programming paradigms are
mostly concerned about programming abstractions (e.g. objects
and events), platforms (e.g. web and mobile) and patterns (e.g. pro-
ducer consumer). The programming paradigms category includes
five lower level categories among which object-oriented concurrency
alone contains more than a third of questions that developers ask
in this category. This is inline with the general understanding that
object-orientation is a dominant programming paradigm. Devel-
opers ask the most (35%) about object-oriented concurrency and
the least (6%) about event-based concurrency when asking about
programming paradigms.

In the object-oriented concurrency and event-based concurrency
topics developers ask questions with titles like “Is it better to syn-
chronize object from inside of the class that encapsulates access it
or from outside?” and “What type of timer event should I use for a
background process when my timer fires very quickly?”.

Barua et al. [7] study and categorize all Stack Overflow ques-
tions and answers into several general topics including web and
mobile development. Our concurrency topics mobile concurrency
and web concurrency coincide with their general web development
and mobile development topics. Our mobile concurrency topic is
inline with Pinto et al.’s [25] observation that “concurrent pro-
gramming has reached mobile developers”. Out of the 250 most
popular concurrency questions in their study, 22 are related to
mobile development.

Finding 7: Developers ask the most (35%) about object-
oriented concurrency when asking about concurrent program-
ming paradigms, inline with the general understanding that
object-orientation is a dominant programming paradigm for
concurrency. Developers, ask the least (6%) about event-based
concurrency.

3.2.3 Correctness. Correctness is concerned with prevention of
data corruption for concurrently accessed (e.g. read and write) data
using mechanisms like locking, consistent memory models and
thread safe data structures and programming patterns. Correctness
questions are almost evenly divided among its topics thread safety,
locking, concurrent collections and memory consistency.

In the correctness category developers ask questions with titles
like (thread safety):“How to make factory [pattern] thread safe?”
(locking):“Is there a way to lock 2 or more locks or monitors atom-
ically?”, (concurrent collections):“Threadsafe dictionary that does
lookups with minimal locking” and (memory consistency):“Atomic
read-modify-write in C#”.

Lu et al. [19] categorize concurrency bug patterns and their fixes.
Our memory consistency topic coincides with their observations
that most concurrency bugs are atomicity violation bugs where
the "desired serializability among multiple memory accesses is
violated" and order violation bugs where the "desired order between
two (groups of) memory accesses is flipped." Our locking topic
coincides with their designation that locking is one of the main
fixes for concurrency bugs to ensure correctness. In addition, our
correctness category and its locking topic coincide with Pinto et
al.’s [25] correctness and locking themes. Similarly, our concurrent
collections topic coincides with their concurrent libraries theme.

Finding 8: Developers ask almost equally about thread safety
(27%), locking (25%), concurrent collections (23%) and memory
consistency (20%) when asking about correctness.

3.2.4 Basic concepts. Basic concepts include questions about
both theoretical and practical questions about concurrency with
titles like “How many threads are involved in deadlock?”, “What is a
race condition?”, “Lock, mutex, semaphore... what’s the difference?”
and “Java: notify() vs. notifyAll() all over again”.

Our basic concepts category coincides with Pinto et al.’s [25]
themes for theoretical concepts and practical concepts.

3.2.5 Debugging. Debugging is mainly concerned about finding
and fixing concurrency bugs which manifest either in the behav-
ior or output of programs. Debugging questions are almost evenly
divided among its topics irreproducible behavior and unexpected out-
put which includes question with titles like “Trace non-reproducible
bug in C++” and “Synchronized codes with unexpected outputs”.

Our irreproducible behavior topic coincides with Lu et al.’s [19]
observation that some ”concurrency bugs are very difficult to re-
peat”.

3.2.6 Persistence. Persistence is about storing and retrieving of
data using persistence management systems (e.g. databases man-
agement systems, entity/object persistence2 or file systems). Per-
sistence includes three topics among which database management
systems includes near half of persistence questions. The persistence
category includes question with titles like (database management
system):“How do I lock read/write to MySQL tables so that I can se-
lect and then insert without other programs reading/writing to the
database?”, (file management):“Is this is correct use of mutex to avoid
concurrent modification to file?”, and (entity management):“Save
entity using threads with JPA [Java Persistence API] (synchronized)”.

Our database management systems topic coincides with Barua et
al.’s [7] general MySQL topic.

3.2.7 Performance. Performance is about speeding up execution
of programs (e.g. data scraping programs3).

Performance includes two topics with question with titles like
(runtime speedup):“Poor multithreading performance in .Net” and
(data scraping):“Usingmultithreading to speed up web crawler written
by beautifulsoup4 and python”.

Interestingly, Pinto et al. [25] mentions that they “did not find
questions that ask for advices on how to use concurrent program-
ming constructs to improve application performance, which is sur-
prising, since performance is one of the most important motivations
for the use of concurrency and parallelism”. In contrast our perfor-
mance topic includes more than 7% of all concurrency questions.

3.2.8 GUI. Graphical user interface allows for the interaction
between a software and its user. GUI is the smallest category with
regard to number of questions and includes question titles like
“Force GUI update from UI Thread” and “Object synchronization with
GUI Controls”.

2An entity management system automates serialization of objects (entities) for storage
in database.
3A data scraping program downloads data from remote web URLs and stores it locally.

ESEM ’18, October 11–12, 2018, Oulu, Finland Syed Ahmed and Mehdi Bagherzadeh
Table 3: Popularity measures of concurrency topics.

Topic Avg. views Avg. favorites Avg. score
thread safety 2848 1.5 4.6
basic concepts 2222 1.6 4.3
task parallelism 2216 1.3 4.0
locking 2152 1.3 3.5
thread life cycle management 2130 0.7 2.4
thread scheduling 2032 0.7 2.2
process life cycle management 2004 1.0 2.6
thread pool 1841 0.9 2.7
object-oriented concurrency 1773 0.8 2.6
database management systems 1727 0.6 1.8
thread sharing 1671 0.6 2.0
GUI 1664 0.5 1.6
irreproducible behavior 1647 0.6 2.3
event-based concurrency 1636 0.7 2.3
python multiprocessing 1587 0.9 2.5
entity management 1583 0.8 2.3
memory consistency 1531 1.7 4.8
file management 1458 0.6 1.9
producer-consumer concurrency 1311 0.8 2.2
unexpected output 1304 0.5 1.6
mobile concurrency 1292 0.5 1.3
runtime speedup 1276 0.9 2.7
web concurrency 1252 0.8 1.9
concurrent collections 1155 0.5 2.0
client-server concurrency 1083 0.4 1.1
data scraping 1003 0.6 1.4
parallel computing 899 0.6 1.9
Average 1641 0.8 2.5

Our concurrency topic GUI coincides with Rosen and Shihab’s
[28] UI topic for mobile programming.

3.3 RQ2: Popularity of Concurrency Topics
Popularity of concurrency topics is measured using average num-
ber of views of its questions, their average number of favorites and
average scores, as described previously. Table 3 shows the popular-
ity of concurrency topics using these metrics in a table, sorted by
average number of views.

Intuitively, a topic with higher number of views and favorites
and a higher score is more popular [22, 28, 34]. In Table 3, the
thread safety topic has the highest views, third highest favorites
and second highest score whereas client server concurrency has the
third lowest views and lowest favorites and score.

Finding 9: Questions about thread safety are among the most
popular whereas client server concurrency questions are among
the least popular.

3.4 RQ4: Difficulty of Concurrency Topics
Difficulty of concurrency topics is measured using percentage of
questions with no accepted answers and average median time to
get an accepted answer, as described previously. Table 4 shows
difficulty measurements using these metrics in a table, sorted by
percentage of questions with no accepted answers.

Intuitively, a topic with higher percentage of its questions not
receiving accepted answers or taking longer to receive accepted
answers is more difficult. In Table 4, the irreproducible behavior

Table 4: Difficulty measurements of concurrency topics.
Topic % w/o acc. answer Hrs to acc. answer
database management systems 51.2 1.0
irreproducible behavior 51.1 2.1
web concurrency 50.7 0.9
mobile concurrency 50.4 0.8
client-server concurrency 50.4 0.9
python multiprocessing 50.3 0.9
parallel computation 50.1 2.1
data scraping 48.9 1.0
file management 48.8 0.6
entity management 48.0 1.8
runtime speedup 48.0 0.7
thread pool 47.0 0.7
process life cycle management 44.9 0.6
producer consumer concurrency 43.3 0.7
unexpected output 41.8 0.7
GUI 41.1 0.4
thread scheduling 40.8 0.4
thread life cycle management 40.4 0.3
locking 40.1 0.3
event-based concurrency 39.7 0.6
thread safety 39.6 0.3
concurrent collections 38.6 0.4
basic concepts 37.0 0.7
thread sharing 35.6 0.3
task parallelism 35.3 0.4
object-oriented concurrency 35.2 0.3
memory consistency 33.2 0.4
Average 43.8 0.7

topic has second highest percentage of questions with no accepted
answers and highest time to accepted answers whereas memory
consistency has the lowest percentage of questions with no accepted
answers and second lowest time to accepted answers.

Finding 10: Questions about database management systems
are among the most difficult questions whereas memory consis-
tency questions are among the easiest.

3.5 RQ5: Popularity/Difficulty Correlations
As discussed, thread safety is among the most popular concurrency
topics but its difficulty is near bottom. Intuitively, this could suggest
that theremay be a correlation between the difficulty and popularity
of concurrency topics. We confirm this intuition using Kendall
correlation by taking the following steps. First, we calculate six
correlations between each of our three popularity and two difficulty
metrics. Second, for each correlation, we perform a significance test
at the 90% confidence level to determine if the null hypothesis, of
no significant correlation, can be rejected in favor of the alternative
hypothesis, that there is a negative correlation between popularity
and difficulty between all three popularity metrics and two difficulty
metrics. Interestingly, for all of six correlations, we find that there is
sufficient evidence to conclude that its alternative hypothesis holds
and there actually is a statistically significant negative correlation.
Table 5 shows p-values for correlations of popularity and difficulty
metrics all of which are below 0.05 except one that is below 0.1.

Unlike concurrency topics, not all Stack Overflow topics have
negatively correlated difficulty and popularity. For example, Pinto

What Do Concurrency Developers Ask About? ESEM ’18, October 11–12, 2018, Oulu, Finland
Table 5: Correlations of popularity and difficulty metrics.

p-value Avg. views Avg. favorites Avg. score
% w/o acc. answer 0.0044 0.01166 0.001073
Hrs to acc. answer 0.001449 0.09196 0.02726

1500

2000

2500

3000

32.5 37.5 42.5 47.5 52.5

av
er

ag
e

vi
ew

s

no accepted answer %

thread safety

database mgmt sys
thread pool

process life cycle mgmt

object-oriented conc

task parallelism
basic concepts

thread scheduling

locking

thread life
cycle mgmt

Figure 4: Trading off concurrency topics.

et al.’s [24] Measurement theme in their study of energy efficiency,
is their most difficult and popular theme simultaneously. Similarly,
the general mobile development topic that Barua et al. [7] finds
popular is found to be difficult by Rosen and Shihab [28]. Note that
the correlation between difficulty and popularity of concurrency
topics does not imply causality. Wang et al. [32] study the relation
of 46 factors with time to get an accepted answer to a question,
which is one of our metrics for topic difficulty.

Finding 11: There is a statistically significant negative corre-
lation between popularity and difficulty of concurrency topics.

4 IMPLICATIONS
The results of our study can not only help concurrency developers
but also concurrency educators and researchers to better decide
where to focus their efforts, by allowing them to trade off one
concurrency topic against another based on their popularity and
difficulty. To illustrate, Figure 4 shows the difficulty of our top 10
popular concurrency topics. For simplicity, popularity and difficulty
equal the average number of views for questions of a topic and
percentage of questions without accepted answers. In the figure,
circles are topics with their size showing their number of questions.

Developers Using Figure 4, a novice concurrency developer
may decide to focus their learning on task parallelism with higher
popularity and less difficulty compared to database management
systems. In contrast, a more knowledgeable developer who likes to
learn about advanced topics with more than average difficulty may
decide to learn about process life cycle management. Similarly, the
manager of a development team can use Figure 4 to assign a less
difficult task related to task parallelism to a more novice developer
and a more difficult task related to database management systems
to a more knowledgeable developer [34].

Educators Using Figure 4, an educator may decide to devote
more material and teaching time to the more difficult thread pool
topic compared to process life cycle management. Similarly, an ed-
ucator can use Figure 4 to schedule teaching of the more popular
and less difficult thread safety topic before thread scheduling.

Researchers Using Figure 4, a researcher may decide to focus
their research project on the more difficult and slightly less popular

thread pool rather than thread life cycle management in the hope of
making contributions in a less crowded area.

Obviously, there are many factors that go into tradeoffs that
developers, educators and researchers make to decide where to
focus their efforts. However, we believe our findings can contribute
to inform and improve these decision making processes.

5 THREATS TO VALIDITY
In this section, we discuss threats to the validity of our study [33].

Internal threats Use of concurrency tags to identify concur-
rency posts is an internal threat to validity. This is because con-
currency tags may not be able to identify the complete set of
concurrency-related posts. To minimize this threat we use well-
known techniques used by previous work [28, 34] in developing
our concurrency tags and solid experiments with a broad range of
tag relevance and significance thresholds α and β . Parsing Stack
Overflow dataset, inferring topics from textual contents of posts
and reduction of words to their bases is another threat. To minimize
this threat, we use well known tools used by previous work. We
parse Stack Overflow posts using Python elementTree XML API
[28], infer topics using MALLET [5, 7, 28] and reduce words using
the Porter stemming algorithm [5].

External threats Use of Stack Overflow as the only dataset
to study interests and difficulties of concurrency developers is an
external threat. This is because Stack Overflow posts may not be a
representative of developer interests and difficulties. However, Stack
Overflow’s large number of participant developers and posts along
with its wide-spread popularity among developers may mitigate
this risk. Also, we use title and body of not questions only but also
their accepted answers to mitigate this risk.

Construct threats Manual labeling of topic word sets is a con-
struct threat. To minimize this threat, we use a well-known ap-
proach used by previous work [5] to label topics using their top 10
words and 15 random questions. Determining an optimal value for
K when inferring topics is another threat. To minimize this threat,
we use a well-known approach used by previous work [5, 7, 28]
to find a reasonable value for K using experiments with a broad
range of values for K . It is well-known that determining an optimal
value for K is difficult [7]. Heuristics to measure popularity and
difficulty could be another threat. To minimize this threat, we use
well-known heuristics and tools used by previous work to measure
popularity [5, 28, 34] and difficulty [28, 31, 34].

6 RELATEDWORK
Previous works that are closer to our work study software knowl-
edge repositories, such as Stack Overflow, to understand interests
[1, 2, 7, 13, 14, 28, 31] and difficulties [5, 28, 31, 34] of developers
with software development topics.

Concurrency Closest to our work is the work of Pinto et al.
[25] that uses the 250 most popular concurrency questions on Stack
Overflow to study difficulties that developers face when writing
concurrent programs. They categorize these difficulties into a set of
themes including theoretical and practical concepts, threading and
first steps themes, some of which coincide with our concurrency
topics and categories.

ESEM ’18, October 11–12, 2018, Oulu, Finland Syed Ahmed and Mehdi Bagherzadeh

In other previous work, Pinto et al. [26] analyze the code for 2227
projects to understand the usage of Java’s concurrent programming
constructs and libraries and the evolution of the usage. Lin and
Dig [17] study a corpus of 611 widely used Android apps to under-
stand how developers use Android constructs for asynchronous
concurrency. Blom et al. [10] study the usage of java.util.concurrent
library in Qualitas corpus. Godefroid and Nagappan [12] survey
684 developers to study the spread and popularity of concurrency
platforms and models at Microsoft.

In contrast, in this work we develop a set of concurrency tags to
extract and study a large set of 245,541 concurrency posts on Stack
Overflow and use latent Dirichlet allocation (LDA) to infer con-
currency topics using textual contents of these posts and organize
them into a topic hierarchy. In addition, we measure popularity
and difficulty of concurrency topics, study their correlations and
discuss their implications.

Non-concurrency Rosen and Shihab [28] use LDA to infer mo-
bile development topics on Stack Overflow. They study popularity
and difficulty of their mobile topics and categorize developers’
questions based on platforms for mobile development and type of
questions that developers ask (why, what and how). Yang et al. [34]
use LDA tuned with a genetic algorithm to infer security topics
on Stack Overflow and manually organize their topics into five
categories. They study popularity and difficulty of their security
topics. Bajaj et al. [5] use LDA to infer client-side web development
topics using Stack Overflow and study interests of developers in
these topics and challenges they face when working with these
topics. Barua et al. [7] use LDA to infer general topics on Stack
Overflow. They study relations of questions and answers of these
topics and evolution of developers’ interests in these topics both in
general and for specific technologies.

Gyöngyi et al. [13] and Adamic et al. [1] study Yahoo!Answers
posts to determine developer’s interests in a set of predefined cate-
gories. Hindle et al. [14] use LDA to infer topics related to develop-
ment tasks from commit messages of a standalone software project
and study evolution of developers’ interest in these topics. Treude
et al. [31] and Allamanis and Sutton [2] study Stack Overflow posts
to infer types of questions that developers ask and determine their
difficulties with these question types. Bajracharya and Lopes [6]
study logs of Koders, a code search engine, to learn about general
topic of interest in code search.

However in this work, we focus on inferring concurrency topics
in Stack Overflow using LDA, organize these concurrency topics
into a hierarchy, study their popularity, difficulty and their correla-
tions and discuss their implications.

7 CONCLUSION AND FUTUREWORK
In this paper, we performed a large-scale study using the textual
content of the entirety of Stack Overflow to better understand inter-
ests and difficulties of concurrency developers. We inferred topics
of concurrency questions that developers ask about, organized
them into a topic hierarchy and measured their popularity and diffi-
culty. We showed how our findings not only can help concurrency
developers but also education, and research and development com-
munities that support these developers. One avenue of future work
is to perform a similar study using commit logs and bug reports of
publicly available concurrent software.

REFERENCES
[1] Lada A. Adamic, Jun Zhang, Eytan Bakshy, and Mark S. Ackerman. Knowledge

sharing and Yahoo Answers: Everyone knows something. In WWW ’08.
[2] Miltiadis Allamanis and Charles Sutton. Why, when, and what: analyzing Stack

Overflow questions by topic, type, and code. In MSR ’13.
[3] Mehdi Bagherzadeh and Hridesh Rajan. Order types: Static reasoning about

message races in asynchronous message passing concurrency. In AGERE ’17.
[4] Mehdi Bagherzadeh and Hridesh Rajan. Panini: A concurrent programming

model for solving pervasive and oblivious interference. In MODULARITY ’15.
[5] Kartik Bajaj, Karthik Pattabiraman, and Ali Mesbah. Mining questions asked by

web developers. In MSR 2014.
[6] Sushil Krishna Bajracharya and Cristina Videira Lopes. Analyzing and mining a

code search engine usage log. Empirical Softw. Engg. ’12, 17(4-5).
[7] Anton Barua, Stephen W Thomas, and Ahmed E Hassan. What are developers

talking about? an analysis of topics and trends in Stack Overflow. Empirical
Softw. Engg. ’14, 19(3).

[8] Lauren R. Biggers, Cecylia Bocovich, Riley Capshaw, Brian P. Eddy, Letha H.
Etzkorn, and Nicholas A. Kraft. Configuring latent dirichlet allocation based
feature location. Empirical Softw. Engg. ’14, 19(3).

[9] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.
J. Mach. Learn. Res., 3:993–1022, March 2003.

[10] Stefan Blom, Joseph Kiniry, and Marieke Huisman. How do developers use APIs?
a case study in concurrency. In ICECCS ’13.

[11] Sally Fincher and Josh Tenenberg. Making sense of card sorting data. Expert
Systems ’05, 22(3).

[12] Patrice Godefroid and Nachiappan Nagappan. Concurrency at Microsoft: An
exploratory survey. In (EC)2 ’08.

[13] Zoltán Gyöngyi, Georgia Koutrika, Jan Pedersen, and Hector Garcia-Molina.
Questioning Yahoo! Answers. In workshop on question answering on the Web ’08.

[14] A. Hindle, M. W. Godfrey, and R. C. Holt. What’s hot and what’s not: Windowed
developer topic analysis. In ICSME ’09.

[15] Hugh C. Lauer and Roger M. Needham. On the duality of operating system
structures. SIGOPS Oper. Syst. Rev. ’79, 13(2).

[16] Edward A. Lee. The problem with threads. Computer ’06, 39(5).
[17] Yu Lin, Semih Okur, and Danny Dig. Study and refactoring of Android asynchro-

nous programming. In ASE ’15.
[18] Yuheng Long, Mehdi Bagherzadeh, Eric Lin, Ganesha Upadhyaya, and Hridesh

Rajan. On ordering problems in message passing software. In MODULARITY ’16.
[19] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. A comprehensive study

on real world concurrency bug characteristics. In ASPLOS ’08.
[20] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-

mann. Design lessons from the fastest qa site in the west. In CHI ’11.
[21] Andrew Kachites McCallum. MALLET: A machine learning for language toolkit.
[22] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. "Jumping through

hoops": Why do Java developers struggle with cryptography APIs? In ICSE ’16.
[23] Stephan Neuhaus and Thomas Zimmermann. Security trend analysis with CVE

topic models. In ISSRE ’10.
[24] Gustavo Pinto, Fernando Castor, and Yu David Liu. Mining questions about

software energy consumption. In MSR 2014.
[25] Gustavo Pinto, Weslley Torres, and Fernando Castor. A study on the most popular

questions about concurrent programming. In PLATEAU ’15.
[26] Gustavo Pinto, Weslley Torres, Benito Fernandes, Fernando Castor, and

Roberto S.M. Barros. A large-scale study on the usage of Java’s concurrent
programming constructs. J. Syst. Softw. ’15, 106(C).

[27] M. F. Porter. Readings in information retrieval. chapter An Algorithm for Suffix
Stripping. Morgan Kaufmann Publishers Inc., 1997.

[28] Christoffer Rosen and Emad Shihab. What are mobile developers asking about?
a large scale study using Stack Overflow. Empirical Softw. Engg. ’16, 21(3).

[29] Stack Exchange Dump. https://archive.org/details/stackexchange, June 2017.
[30] Stack Overflow. http://www.stackoverflow.com/, June 2017.
[31] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. How do program-

mers ask and answer questions on the web?: Nier track. In ICSE ’11.
[32] Shaowei Wang, Tse-Hsun Chen, and Ahmed E. Hassan. Understanding the

factors for fast answers in technical qa websites: An empirical study of four stack
exchange websites. In ICSE ’18.

[33] Claes Wohlin, Per Runeson, Martin Hst, Magnus C. Ohlsson, Bjrn Regnell, and
Anders Wessln. Experimentation in Software Engineering. 2012.

[34] Xin-Li Yang, David Lo, Xin Xia, Zhi-Yuan Wan, and Jian-Ling Sun. What security
questions do developers ask? a large-scale study of Stack Overflow posts. JCST
’16, 31(5).

Acknowledgements Ahmed and Bagherzadeh were supported
in part by Oakland University Department of Computer Science
and Research Office.

https://archive.org/details/stackexchange
http://www.stackoverflow.com/

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	3.1 RQ1: Concurrency Topics
	3.2 RQ2: Topic Hierarchy
	3.3 RQ2: Popularity of Concurrency Topics
	3.4 RQ4: Difficulty of Concurrency Topics
	3.5 RQ5: Popularity/Difficulty Correlations

	4 Implications
	5 Threats to Validity
	6 Related Work
	7 Conclusion and Future Work
	References

