
Challenges in Migrating Imperative Deep Learning Programs to
Graph Execution: An Empirical Study

Tatiana Castro Vélez
City University of New York (CUNY) Graduate Center

New York, NY, USA

tcastrovelez@gradcenter.cuny.edu

Raffi Khatchadourian
City University of New York (CUNY) Hunter College

New York, NY, USA

raffi.khatchadourian@hunter.cuny.edu

Mehdi Bagherzadeh
Oakland University

Rochester, MI, USA

mbagherzadeh@oakland.edu

Anita Raja
City University of New York (CUNY) Hunter College

New York, NY, USA

anita.raja@hunter.cuny.edu

ABSTRACT

Efficiency is essential to support responsiveness w.r.t. ever-growing

datasets, especially for Deep Learning (DL) systems. DL frame-

works have traditionally embraced deferred execution-style DL

code that supports symbolic, graph-based Deep Neural Network

(DNN) computation. While scalable, such development tends to

produce DL code that is error-prone, non-intuitive, and difficult

to debug. Consequently, more natural, less error-prone imperative

DL frameworks encouraging eager execution have emerged at the

expense of run-time performance. While hybrid approaches aim

for the “best of both worlds,” the challenges in applying them in

the real world are largely unknown. We conduct a data-driven anal-

ysis of challenges—and resultant bugs—involved in writing reliable

yet performant imperative DL code by studying 250 open-source

projects, consisting of 19.7 MLOC, along with 470 and 446 manually

examined code patches and bug reports, respectively. The results in-

dicate that hybridization: (i) is prone to API misuse, (ii) can result in

performance degradation—the opposite of its intention, and (iii) has

limited application due to execution mode incompatibility. We put

forth several recommendations, best practices, and anti-patterns for

effectively hybridizing imperative DL code, potentially benefiting

DL practitioners, API designers, tool developers, and educators.

CCS CONCEPTS

• General and reference→ Empirical studies; • Computing

methodologies→Machine learning; • Software and its engi-

neering→ Language features; Software evolution.

KEYWORDS

empirical studies, deep learning, imperative programs, hybrid pro-

gramming paradigms, graph-based execution, software evolution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9303-4/22/05. . .$15.00
https://doi.org/10.1145/3524842.3528455

ACM Reference Format:

Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita

Raja. 2022. Challenges in Migrating Imperative Deep Learning Programs to

Graph Execution: An Empirical Study. In 19th International Conference on

Mining Software Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA, USA.

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3524842.3528455

1 INTRODUCTION

Machine Learning (ML), including Deep Learning (DL), systems are

pervasive in society. Central to such systems are dynamic models,

whose behavior is ultimately defined by input data. However, as

datasets grow, efficiency becomes essential to support responsive-

ness [103]. For industrial applications, DL frameworks—pillars of

DL systems [56,58,68,100]—must quickly execute complex compu-

tations on large datasets while supporting easy-to-use program-

ming paradigms [60]. For efficiency, DL frameworks have tradition-

ally embraced a deferred execution-style that supports symbolic,

graph-based Deep Neural Network (DNN) computation [25,46].

While scalable, development is error-prone, cumbersome, and pro-

duces programs that are difficult to debug [56,57,99,100]. Further-

more, because graph computation executes statements in a non-

imperative order, traditional Software Engineering (SE) tools cannot

help troubleshoot bugs [9]. Contrarily, more natural, less error-

prone, and easier-to-debug imperative DL frameworks [3,27,79]

encouraging eager execution have emerged. Though ubiquitous,

eagerly-executed imperative DL programs are less efficient and scal-

able as their deferred-execution counterparts [25,37,43,60,72,79].

Executing (imperative) DL programs eagerly “makes tensor [matrix-

like data structures central to DL] evaluation trivial but at the cost

of lower performance” [30].1 Thus, hybrid approaches [6,37,72]—

integrated into mainstream DL frameworks—execute imperative

DL programs as static graphs at run-time. For example, in Tensor-

Flow [1]—a popular [54,100] DL framework—AutoGraph [72] can

potentially enhance performance by decorating (annotating)—with

optional yet influential decorator arguments—appropriate Python

function(s) with @tf.function. Decorating functions with such hy-

bridization Application Programming Interfaces (APIs) can increase

imperative DL code performance without explicit modification.

Though promising, hybrid approaches necessitate non-trivial

specialized metadata [60] and exhibit limitations and known is-

sues [42] with native program constructs. Subtle considerations

1Performance is this paper refers to run-time performance (speed), not model accuracy.

469

The 2022 Mining Software Repositories Conference

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524842.3528455&domain=pdf&date_stamp=2022-10-17

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

are required to make code amenable to safe, accurate, and efficient

graph execution—avoiding performance bottlenecks and semanti-

cally inequivalent results. Therefore, developers are burdened with

making their code compatible with the underlying execution model

conversion, as well manually specifying which functions should

be converted. While alternatives [60] exist, they impose custom

Python interpreters, which may be impractical for industry, and

support only specific Python constructs. Thus, there is a knowledge

gap in how hybridization is used in real-world DL applications,

leading to the challenges in successfully applying it underexplored.

Without such insight, DL systems may be inefficient, fallible, and

difficult to maintain. Moreover, advances in DL are likely to be

futile if they cannot be effectively used.

To fill this gap, we conduct an empirical study on common devel-

opment challenges in migrating imperative DL code to graph exe-

cution using hybridization in open-source DL systems. Particularly,

we aim to answer the following research questions: (RQ1) what bug

patterns and corresponding challenges are involved in writing reli-

able yet performant imperative DL code, and (RQ2) which best prac-

tices and anti-patterns can be extracted from (RQ1)? Such knowl-

edge can help drive new automated migration techniques, IDE code

completion, and automated (data science-specific [11,32,33]) refac-

toring mining approaches [95]. The results: (i) advance knowledge

of this emerging yet pervasive hybrid paradigm, (ii) provide feed-

back to language and API designers for future API versions, (iii) help

tool designers comprehend difficulties with writing performant im-

perative DL code, (iv) include preliminary recommendations, best

practices, and anti-patterns for practitioners in using hybridization

effectively, and (v) assist educators in teaching hybridization APIs.

Our study involves analyzing occurrences of tf.function in 250

projects, consisting of 19.7 MLOC, along with 470 and 446 manually

examined code patches (Git commits) and bug reports (GitHub is-

sues), respectively. Challenges—along with their causes, symptoms,

and fix patterns—are taxonomized using manual processes aided

by automated software repository mining. Due to its popularity

and extensive analysis by previous work [26,55,56,58,68,74,99,100],

we focus on hybridization in TensorFlow. Our study indicates that:

(i) tf.function is widely used, (ii) misusing tf.function was a ma-

jor theme in migrating imperative DL programs to graph execution,

(iii) subtle bugs in using tf.function can result in performance

degradation—the opposite of its intention, and (iv) tf.function is

commonly incompatible in a given context—limiting its application.

Our contributions can be summarized as follows:

Hybridization bug hierarchical taxonomy From 470 and 446

patches and bug reports, respectively, of 250 projects man-

ually examined, we build a rich hierarchical taxonomy of

common hybridization challenges.

Recommendations, best practices, & anti-patterns Wepropose

preliminary recommendations, best practices, and anti-patterns

for effectively hybridizing imperative DL code from our sta-

tistical results, as well as an in-depth analysis.

Complete results of our study are available in our dataset [24].

2 MOTIVATING EXAMPLES & BACKGROUND

Popular DL frameworks have historically embraced deferred

execution-style (low-level) APIs, making DNNs straight-forward to

1 # Build a graph.
2 a = tf.constant(5.0)
3 b = tf.constant(6.0)
4 c = a * b

5 # Launch graph in a session.
6 sess = tf.Session()
7 # Evaluate the tensor `c`.
8 print(sess.run(c)) # prints 30.0

Listing 1: TensorFlow deferred execution-style code [48].

1 class SequentialModel(tf.keras.Model):
2 def __init__(self, **kwargs):
3 super(SequentialModel, self).__init__(...)
4 self.flatten = layers.Flatten(
5 input_shape=(28, 28))
6 num_layers = 100 # Add many small layers.
7 self.layers = [layers.Dense(64, activation =
8 "relu") for n in range(num_layers)]
9 self.dropout = tf.keras.layers.Dropout(0.2)
10 self.dense_2 = tf.keras.layers.Dense(10)

11 @tf.function(...) # Executes
12 # the model as a graph
13 # (with optional args).
14 def __call__(self, x):
15 x = self.flatten(x)
16 for layer in self.layers:
17 x = layer(x)
18 x = self.dropout(x)
19 x = self.dense_2(x)
20 return x

Listing 2: TensorFlow imperative (OO) DL model code [43].

1 @tf.function
2 def f(x):
3 print("Input: ", x)
4 f(1)
5 f(1)
6 f(2)

Output (expecting 1, 1, 2):

Input: 1
Input: 2

Listing 3: Imperative TensorFlow code with Python side-effects [42].

execute as symbolic graphs that enable various run-time optimiza-

tions. For example, during graph building (lines 2–4 of listing 1),

line 4 does not execute until the Session created on line 6 is run on

line 8. While efficient, legacy code using such APIs are cumbersome,

error-prone, and difficult to debug and maintain [56,57,99,100].

Such APIs also do not natively support common imperative pro-

gram constructs, e.g., iteration [5]. Contrarily, eager execution-style

DL APIs [3,79] facilitating higher-level, imperative, and Object-

Oriented (OO) [27] (Python) programs that are easier-to-debug,

less error-prone, and more extensible have emerged. For instance,

with eager execution, line 4 of listing 1 would execute and immedi-

ately evaluate tensor c, foregoing the need of a session. In many

DL frameworks, eager execution is now the default.

Despite the benefits, executing (imperative) DL programs eagerly

comes at the cost of run-time performance [30]. Thus, hybridiza-

tion approaches [6,37,72] that execute imperative DL programs

as graphs at run-time have been integrated into mainstream DL

frameworks. For example, listing 2 portrays TensorFlow imperative

(OO) DL code representing a modestly-sized model for classifying

images. On line 11, AutoGraph [72] is used to potentially improve

performance by decorating the model’s call() method with @tf.

function, possibly providing optional yet influential decorator ar-

guments. At run-time, call()’s execution will be “traced” and an

equivalent graph will be generated [42]. In this case, a speedup

(runtimeold/runtimenew) of ∼9.22, averaged over five runs, ensues [63].

As noted in Section 1, while promising, hybridization presents

unique challenges [42,60] in ensuring that programs run reliably

and efficiently. If used incorrectly, hybridization may yield pro-

grams that result in unexpected run-time behavior. Decorating the

right functions, supplying the correct decorator arguments, using

the appropriate API, and properly structuring imperative DL code

so that it is amenable to graph execution can be daunting, especially

for developers (data scientists) lacking SE expertise.

Python Side-effects. Side-effect producing, native Python state-

ments, e.g., printing, list appending, global variable mutation [42],

470

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

1 class Model(tf.Module):
2 def __init__(self):
3 self.v = tf.Variable(0)
4 self.counter = 0
5

6 @tf.function
7 def __call__(self):
8 if self.counter == 0:
9 self.counter += 1
10 self.v.assign_add(1)
11 return self.v

12 m = Model()
13 for n in range(3):
14 print(m().numpy())

Output (expecting 1, 1, 1):

1
2
3

Listing 4: Imperative TensorFlow code using a counter [42].

1 model = SequentialModel()
2 res1 = model(tf.constant([1, 2, 3]))
3 res2 = model(tf.constant([1, 2, 3, 4, 5]))

WARNING: 5 of the last 5 calls
triggered ... retracing.
Tracing is expensive.

Listing 5: DLmodel (listing 2) client code using varying datasets [42].

are problematic for tf.function-decorated functions.2 Because they

are traced, a function’s behavior is “etched” into its corresponding

graph and thus can have unexpectant results, executing side-effects

multiple times or not at all. Side-effects occur when tf.functions

are called the first time; subsequent calls with similar arguments

execute the graph instead. For example, on line 3 of listing 3, f()

outputs x. On line 1, f() is decorated with @tf.function, which

migrates it to a graph at run-time. Then, f() is invoked three times,

the first two with the argument 1 and the last with 2. In the output

on the right, the first invocation of f() on line 4 results in a graph

being built (through tracing) that—due to a similar argument—is

later used on line 5. Consequently, the side-effecting code on line 3

is not exercised. In contrast, line 3 is exercised as a result of the call

on line 6 due to a different argument being supplied.

Although listing 3 is simple, unexpected behavior can gener-

ally be difficult to notice. Consider listing 4, where a model uses a

counter to safeguard a variable incrementation. The initial value of

counter, however, is captured during tracing upon the first model

invocation (line 14). The overall effect is that the value of v is incre-

mented unconditionally (line 10) each time the model is invoked.

Such problems are common in migrating deferred-execution–style

DL code (e.g., listing 1) to an imperative style (e.g., listing 2). Worse

yet, developers only realize such errors after observing suspicious

numerical results or significantly lower performance than expected

(e.g., when guarded operations are costly) [42].

When To Use Hybridization? Besides ensuring that DL code is

amenable hybridization [36], developers must also know when and

where to use it to avoid performance bottlenecks and other unde-

sired behavior. For example, confusion exists on how often @tf.

function should be applied [87], and calling tf.functions recur-

sively could cause infinite loops [42]. Even if a recursion seems to

work, the tf.functionwill be tracedmultiple times (“retracing”), po-

tentially impacting performance. Also, using @tf.function on small

computations can be dominated by graph creation overhead [43].

Using Hybridization Parameters. Decorating the correct function

but with incorrect decorator arguments may result in performance

degradation. For instance, retracing helps ensure that the correct

graphs are generated for each set of inputs; however, excessive

retracing may cause code to run more slowly had tf.function not

been used [42,80,81]. Listing 5 depicts code that invokes the model

2Herein, “tf.function-decorated” functions will be referred to as “tf.functions.”

Table 1: Studied subjects.

subj KLOC studied periods cmts/iss kws exe

fixes 122 10,879 2015-11-06 to 2021-01-14 199,140 470 470
reports 167 17,378 2012-05-07 to 2021-08-11 237,232 704 446

Total 250* 19,677* 2012-05-07 to 2021-08-11 436,372 1,174 916

* Represents unique totals due to subject overlap between the study portions.

declared in listing 2 multiple times using different (hypothetical)

datasets, producing the warning on the right. To limit retracing, an

input_signature can be specified on line 11, listing 2 as follows:

@tf.function(input_signature=(tf.TensorSpec(shape=[None], dtype=tf.int32),))

A [None] dimension in the tf.TensorSpec allows for flexibility in

trace (graph) reuse. Since tensors are matched on their shape, a

Nonewild card allows tf.functions to reuse traces for variably-sized

input—occurring when sequences or images are of different lengths

or sizes, respectively. Since each call no longer produces a trace,

the warning disappears—averting any performance bottlenecks.

These simplified examples demonstrate that effectively using

hybridization is not always straight-forward, potentially requiring

complex analyses and a thorough understanding of API intricacies—

a compounding problem in more extensive programs. As imperative

DL programming becomes more widespread, statistical insight into

how such programs are best written efficiently and how to avoid

common bugs would be extremely valuable to developers.

3 METHODOLOGY

Subjects.We examined Git commit changesets (code patches; row

fixes, Table 1) representing bug fixes involving tf.function and

GitHub issues (row reports) mentioning tf.function. Our study

encompassed 250 open-source DL systems (column subj), compris-

ing ∼19.7 million lines of source code (column KLOC), 199,140

Git commits (column cmts for commits), 237,232 GitHub issues

(column iss for bug reports), and 460.21 years of combined project

history, averaging 1.86 years per subject. Subject details may be

found in our dataset [24]; subjects sources are publicly available on

GitHub. While we focus tf.function client usages, we include Ten-

sorFlow as developers often file GitHub issues against it to discuss

tf.function usage challenges and potential bugs. Subjects include

those used in previous studies [26,32,55,56,58,59,68,99,100] and ap-

pearing in data science-specific datasets [17]. To determine if a

project represents a DL system, i.e., one with at least one DL mod-

ule, we searched repositories for specific keywords, e.g., “keras,”

“layer,” “net,” “neural network,” “deep learning.” The keywords have

also been used in related work [59] for a similar purpose; the key-

words were only used to ensure that subjects were DL systems, not

for finding hybridization bugs. We then verified the code to ensure

that the keywords represented DL contexts.

For changesets (bug fixes), subject criteria consists of having

at least one commit whose changeset contains tf.function. For

issues, subjects must have at least one GitHub issue mentioning

“tf.function.” Subjects were mostly written in Python, which is pop-

ular for DL [16]. While the subjects include popular open-source

repositories from well-known and reputable organizations, e.g.,

Apache [7], Apple [8], Google [45], NVIDIA [75], they also include

lesser-known repositories to understand hybridization challenges

471

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

facing the DL community-at-large. Furthermore, hybridization is

relatively new—tf.function was released on September 30, 2019.

Mining. To find changesets (patches) representing hybridiza-

tion bug fixes, we mined repositories for commits referencing tf.

function using gitcproc [23], a tool for classifying Git commits used

by previous work [12,65,92,94]. Row fixes, column kws of Table 1

is the commits containing tf.function in their changesets. We man-

ually examined all 470 commits, portrayed by row fixes, column

exe. To find issues related to hybridization, we mined repositories

for GitHub issues mentioning “tf.function” by first filtering out

issues containing only irrelevant discussion (e.g., “social conversa-

tion”) using a pre-trained classification model [10] used by previous

work [76,98,102]. We then invoked the GitHub Search API [41] to

select (open and closed) issues that included “tf.function” using

several different criteria, e.g., “best match,” “most commented.” To

reduce false positives, since the API ignores punctuation, we further

filtered the results to ensure that they included the period. Row re-

ports, column kws of Table 1 is the issues3 containing “tf.function”

in either their title or body (description and conversations). We

randomly selected a subset of these to examine manually (details be-

low), portrayed by row reports, column exe. The aforementioned

tools [10,23,41] were only used to narrow the search space and not

for classification, which was done manually. The GitHub search was

performed in a (standard) manor consistent with previous work.

Identification.We used a gitcproc feature that leverages heuris-

tics based on log messages to identify bug fix commits. Natural

language processing (NLP) is internally used by gitcproc to deter-

mine the commits that fall into this category. Doing so helps us

to focus on likely bug fix commits for further manual examina-

tion. Random matching issues—with ones containing code being

favored—were chosen for manual inspection. Next, the authors

manually examined the commits and issues to ascertain if they

indeed relate to hybridization bugs. Two authors are SE and PL

professors with extensive expertise in software evolution, system

performance, and empirical SE. Another author is a data mining

and ML professor with substantial proficiency in AI and SE. Three

authors have several years of industrial SE experience.

Although the researchers did not converse during the initial

identification and classification process to avoid bias, this mix of

expertise is effective in studying SE tasks in DL systems. The re-

searchers convened regularly during the study, as well as at the

end for finalization, to solidify the results. Cohen’s Kappa coeffi-

cients [96] for identification and classification were 0.80 and 0.57,

respectively.4 As the authors did not always have detailed knowl-

edge of the particular systems, only changes where a bug fix was

extremely likely were marked as such. The authors also used com-

mit comments and referenced bug databases to ascertain whether

a change was a bug fix. GitHub issues tags were also considered.

Classification. For commits, once bug fixes were identified, the

authors studied the code changes to determine the category of bug

fixes and whether the category relates to hybridization. For issues,

the authors examined issue descriptions and discussions, paying

attention to the tf.function challenges being described and their

possible solutions and workarounds. Particular attention was paid

3Also includes pull (patch) requests as these are treated similarly in GitHub.
4Moderate agreement is expected; the team has mixed ML/SE expertise.

Table 2: Discovered top-level problem categories.

problem abbr cmts iss total

Performance PRF 74 37 111
API misuse APM 23 30 53
Incompatibility INC 16 33 49
TensorFlow bug TFB 4 18 22
Other OTH 14 2 16
Unknown UKN 10 0 10
Test TST 8 0 8
Debuggability DBG 4 2 6
Exposed variable state EVS 1 1 2
Compilation error CMP 1 0 1
Numerical errors NME 1 0 1
Segmentation fault SEG 1 0 1

Total 157 123 280

to code snippets. No scripts were involved in the classification—only

manual examination. Categories were then formed into a hierarchy,

in part by using the TensorFlow documentation [42]. On several

occasions, developers were contacted for clarification using the

GitHub line comment mechanism and via email.

4 RESULTS

This section answers (RQ1) by summarizing our results, noting

trends, exceptions, and unexpected outcomes. Contrarily, Section 5

consolidates, comments on, and connects the main findings. Related

discussion in Section 5 is referenced where appropriate.

4.1 Quantitative Analysis

From the 470 commits and 446 GitHub issues (totaling 916) manu-

ally examined (column exe, Table 1), we found 157 and 123 (totaling

280) tf.function bug fixes and developer challenges depicted in

columns cmts (commits) and iss (GitHub issues) of Table 2, re-

spectively. Finding these bugs and understanding their relevance

required a significant amount of manual labor that may not be feasi-

ble in more large-scale, automated studies. Python, being a dynamic

language, can be difficult to analyze, particularly w.r.t. inheritance

relationships; subclassing Keras models is a common way to write

imperative DL code in TensorFlow (cf. line 1, listing 2). Furthermore,

our number of findings (280) is comparable with previous studies

involving manual inspection (e.g., Tang et al. [91] found 285, Zhang

et al. [100] found 175, Khatchadourian et al. [65] found 61). Never-

theless, as tf.function becomes more popular, we expect its usage

and number of related bugs to grow.

4.1.1 Problem Categories. We group bug fixes and GitHub issues

into common problem categories, shown in Fig. 1 and Table 2 (col-

umn abbr is the category abbreviation). The former includes com-

bined data (commits and issues), while the latter separates the two.

Figure 1 presents a hierarchical categorization—with varying levels

of detail—of the 280 discovered tf.function-related challenges in

our subjects. Challenges are represented by their problem cate-

gory name and are followed by their counts. Categories without

instances are abstract, i.e., they only group together other cate-

gories. Table 2 portrays a nonhierarchical, top-level view of Fig. 1;

the innermost (top) layers of Fig. 1 represent the rows of Table 2.

Challenges are grouped into several (top-level) problem cate-

gories. Categories include performance (PRF, 90; further discussed

472

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Figure 1: Discovered problem categories (hierarchical).

later), API misuse (APM, 25; further discussed later), and incom-

patibility between execution modes, i.e., eager and deferred, where

tf.function is used in a context not amenable to graph conversion

(INC, 48; further discussed later). An example of the latter is where

particular loss functions cannot be used in graphmode or there is an

AutoGraph limitation that prevents graph conversion. Other prob-

lem categories include dealing with or working around open bugs

related to tf.function in TensorFlow (TFB, 20; further discussed

later) and “other” (OTH, 16), which involves syntactic corrections,

general cleanup, and refactorings—a category similar to that used

by previous work [65,94]. “Unknown” (UKN, 10) represents situ-

ations where the problem category was indeterminable without

further domain knowledge or developer input. Only 3.57% of prob-

lems had unknown categories. Code changes involving tf.function

appearing in tests were categorized as “Test” (TST, 8).

Debuggability. Debuggability (DBG, 6) represent situationswhere

using tf.function to improve performance of DL code may, in turn,

reduce a developer’s ability to easily debug it. “In general, debug-

ging code is easier in eager mode than inside tf.function” [42].

In such situations, developers may not understand that using tf.

function is the reasonwhy they are not able to debug their code, e.g.,

intermediate variable values may be missing. Or, tf.function may

temporarily be removed (via a commit) to facilitate debugging, but

developers inadvertently neglect to replace it (cf. Section 4.2.5). This

latter situation is unfortunate as, to assist in the debugging process,

a flag can be used to globally (temporarily) toggle tf.function [42].

Other Categories. Other (top-level) categoriesweremoreminor in

terms of their counts, yet have potentially significant consequences.

For example, exposed variable state (EVS, 2) occurs when saving (ex-

posed) program state (variables) is problematic during tf.function

conversion at run-time, e.g., variables becoming undefined [71].

Numerical errors (NME, 1) involve possible numeric overflow. Au-

tograph compilation errors (CMP, 1) surface when tf.functions

are compiled and subsequently result in compilation errors. This

problem may arise when certain dynamic Python features, e.g.,

lexical scoping, are utilized (cf. Section 4.2.2). Segmentation fault

(SEG, 1) is when using tf.function causes a program crash. While

compilation and numerical errors and segmentation faults may

be considered symptoms, we focus on tf.function client usage;

these categories represent problems from a client perspective. Their

underlying causes are bugs within the framework.

Performance. As the main purpose to hybridization is to improve

the performance of imperative style DL code by building a bridge to

graph-based execution, it was not surprising that performance—at

39.64% (111/280)—was the largest category:

473

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

Table 3: Performance fixes.

fix category count

Add tf.function decorator 61
Change tf.function argument 20
Add input_signature argument to tf.function 9
Remove tf.function decorator 8
Upgrade to new library version 4
Relocate tf.function (use on different function) 5
Re-add tf.function decorator 2
Unsolved (open) 2
Total 111

Finding 1: At 39.64% (111/280), performance was the largest

problem category encompassing tf.function usage.

Performance problems represent a spectrum of situations, stemming

from using tf.function to solve a DL code performance bug to

not observing the expected speedup from using tf.function to

exhibiting worse performance that not using tf.function. Table 3

portrays the various fixes used to solve performance problems.

Though the majority of times it was used to enhance performance

of imperative DL code, we found that in 7.21% (8/111) of cases, tf.

function was removed to alleviate performance problems:

Finding 2: Despite intent to improve performance, tf.function

caused performance degradation in 7.21% (8/111) of cases.

Moreover, only 54.95% of imperative DL code performance prob-

lems were fixed by adding tf.function. Thus, the remaining 45.05%

of cases were due to existing hybridization:

Finding 3: Only 54.95% (61/111) of imperative DL code per-

formance problems were fixed by adding tf.function. The

remaining 45.05% were due to using tf.function.

In fact, 25.23% of performances fixes involved altering tf.function

arguments:

Finding 4: Performance fixes entailed altering developer-

supplied tf.function(...) arguments at a rate of 25.23%.

Performance problems are further categorized into those related

to “input shapes,” which make up 18.92% of all such problems:

Finding 5: Performance problems involved incorrect input

tensor shape specifications at a rate of 18.92%.

Tensors are heavily used DL programs, and accurately matching ten-

sor shapes (dimensions) is often required to write reliable DL code.

In hybridization, since tf.functions are being traced and thus con-

verted into graphs, the underlying framework (by default) attempts

to build specialized graphs for each kind of input. However, when

tensors are involved, graphs may be specialized to particular input

shapes, creating a situation where function retracing is excessive.

Retracing can lead to significant performance degradation [43].

To curb this problem, an (input_signature) argument may be

supplied to tf.function that specifies an expected range of shapes.

In effect, developers provide contextual information to the frame-

work about how tf.functions will be used. For instance, setting

experimental_relax_shapes to Truemay cause tf.functions to gen-

erate fewer graphs that are less specialized on input shapes. How-

ever, this may not match reality, especially when dealing with dy-

namic shapes. As such, we further divide “input shape” challenges:

Graph overly specified on input shapes (11) Generated graphs

are too specific for the context where a tf.function is being

used, which can occur when either:

Table 4: API misuse causes.

cause count

API confusion 20
Use of graph mode 14
Decorated outer function calls unnecessarily decorated inner function 8
Incorrect tf.function argument 7
Use of eager mode 2
Lost variable state due to graph conversion 1
Lack of static shape specifications 1
Total 53

(i) experimental_relax_shapes is incorrectly set to False.

(ii) input_signature is unnecessarily specified. Either it should

be either removed or set to None (the default).

Underspecified input signature (4) The input_signature param-

eter lacks proper arguments to avoid excessive retracing.

Unspecified input signature (6) The input_signature is missing

in contexts that are advantageous to graph specialization.

API Misuse. API Misuse—the second largest problem category

at 18.93%—involves situations where tf.function is not used in a

way recommended by the API documentation:

Finding 6: At 18.93%, API misuse—using tf.function incon-

sistent to documentation—was the 2nd largest category.

Misusing APIs typically results in either run-time errors or unex-

pected behavior. Violating DL API constraints may lead to crashes

and poor performance [56,58]. In high-level, e.g., imperative DL,

code, bugs are commonly due to misunderstandings of the guar-

antees offered and obligations imposed by increasingly layered

software, e.g., those written against the TensorFlow API [66]. Ten-

sorFlow documentation contains a prominent sections regarding

tf.function and AutoGraph usage constraints and limitations. If

such constraints, e.g., w.r.t. control-flow, side-effects, global vari-

ables, are violated, AutoGraph will not properly generate graphs

from Python code. Despite the vast documentation, at 37.74%, API

confusion was the largest cause of API misuse (Table 4):

Finding 7: API misuse was caused by developers not under-

standing hybridization APIs at a rate of 37.74% (20/53).

Regarding potential category overlap, recall that API misuse is

defined above as a violation of intended API usage per the documen-

tation. Consider changing a tf.function argument. Performance

degradation can occur when parameter usage is consistent with the

documentation; it can be a tuning issue, e.g., shape-related. In such

a case, according to the earlier definition, shape mismatches would

not be considered API misuse as they are dependent on context.

We found that the most common way (28.30% or 15/53) to fix

API misuse was to remove @tf.function. Of these, in 46.67% of

cases (7/15), the problem cause was that @tf.function was used to

decorate an inner function called by an already decorated outer

function. As tf.function applies to the decorated function and all

other functions it calls and since the inner function cannot be called

from any other function besides the outer function, the inner func-

tion decorator is unnecessary and can thus be safely removed [43].

However, another 46.67% (7/15) of cases were caused by API con-

fusion. Thus, in these cases, unfortunately, developers abandoned

@tf.function—along with its potential to enhance performance—

due to their confusion over how to use it. Most likely, developers

were doing so to avoid run-time errors, which occurred in 62.50%

474

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Figure 2: API misuse symptoms.

(5/8) of tf.function removals not caused by unnecessary inner func-

tion decoration and 52.83% (28/53) overall (Fig. 2):

Finding 8: To fixAPImisuse, tf.functionwas removed 28.30%

of the time. In 46.67% of these, hybridization was abandoned

due to API confusion, with 62.50% causing run-time errors.

API misuse is further divided into several categories, the largest

of which involves creating tf.Variables within tf.functions (10).

A tf.Variable represents a tensor whose value is mutable [44]. Cur-

rently, tf.function only supports singleton tf.Variables; creating

multiple tf.Variables within the scope of a tf.function results

in a run-time exception [42]. Redundant decoration (8) is where

multiple functions on a call path are unnecessary decorated with

@tf.function; all functions called from a tf.function are also auto-

matically migrated to graphs. Accurately approximating such paths

statically—especially in the context of a dynamic language such

as Python—may be difficult, and there is ample confusion among

developers on where to apply @tf.function [87] (cf. Section 2).

Executing Python side-effects (2) refers to the situation where

tf.functions contain side-effect producing Python statements. As

described in Section 2, executing such statements within migrated

graphs can have unexpectant results, sometimes executing twice or

not all. A specific pattern of side-effects were those involving the

use of iterators and generators (2), a common looping mechanism in

Python code. Random number generation (RNG, 3) problems occur

when developers do not use RNG facilities consistently with the

documentation, commonly resulting in unexpected behavior under

graph mode. For example, RNG creation inside a tf.function can

only happen during the first run of the function [47]. Seeding may

also not work as expected in graph mode (e.g., [89])—“when [a]

global seed is set but [TensorFlow] operation seeds are not, the se-

quence of random numbers are the same for each tf.function” [51].

“Graph inadequately specialized on input shapes” (2) involves an

API misuse that is opposite to the “graph overly specified on input

shapes” performance problem category described earlier. Such prob-

lems may be fixed by setting experimental_relax_shapes to False

(the default). In other words, the shape specification is too general,

which may result in a situation that is not amenable to graph migra-

tion [38]. For example, an input_signaturemay be supplied using a

wild card shape to improve performance (q.v. Section 2) but results

in a run-time error due to a tensor dimension mismatch [42,83].

Figure 3: Incompatibility problem symptoms.

Conversion to TFLite (1) represents problems with an alternate use

case of tf.function to convert a DL model to a portable format.

Execution Mode Incompatibility. At 17.50%, incompatibility is the

third largest problem category:

Finding 9: Execution mode incompatibility, at 17.50% (49/280),

was the 3rd largest problem category, meaning that seamlessly

using similar constructs in different modes was problematic.

Developers seemingly struggle with seamlessly using imperative DL

program constructs, e.g., particular loss functions, across execution

modes. Ideally, developers could toggle between eager and graph

executionmodes—withAutoGraph simply enhancing performance—

without making code changes. In other words, incompatibility prob-

lems prevents developers from focusing on the correctness of their

DL code—thinking of performance as an afterthought. Instead, to

use hybridization effectively, developers must be cognizant of its

internal structure, i.e., how their DL code is being migrated to

graphs. Moreover, developers must (manually) be aware of which

constructs are amenable to graph conversion, how best to write

code that works in either mode, and how to interact with code that

may be executed in a different mode.

Executionmode incompatibility problems have dire consequences.

As shown in Fig. 3, 81.63% of symptoms resulting from incompatibil-

ity involve run-time errors or unexpected behavior. Such problems

that only occur at run-time are difficult to uncover and, if found,

may be found after deployment:

Finding 10: Incompatibility problems led to run-time errors

or unexpected results, which do not surface until after run-

ning the code, 81.63% of the time.

TensorFlow Bugs. TensorFlow bugs (TFB) made up 7.86% of bugs:

Finding 11: TensorFlow bugs, where developers were offered

workarounds or awaited new framework versions, made up

7.86% of problems. Of these, 9.09% involve deadlocks.

Such bugs involve dealing with or working around open TensorFlow

bugs related to tf.function. As hybridization is relatively new, the

tf.function API is under active development. Thus, it was not un-

common for such bugs to be reported to TensorFlow by filing issues

against its GitHub repository; 81.82% of TFBs appear as GitHub is-

sues (see Table 2 and Fig. 4). We categorize bugs as TFB if they were

in fact real bugs with TensorFlow that required a workaround—often

suggested by TensorFlow contributors—or a new TensorFlow library

475

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

Figure 4: Top-level problem category comparison.

1 + @tf.function
2 def pm(linear):
3 state = lpt_init(linear, a0=0.1, order=1)
4 final_state = nbody(state, stages, nc)
5 tfinal_field = cic_paint(tf.zeros_like(linear), final_state[0])
6 return tfinal_field

Listing 6: Commit af1664e7 in galference: bug boxsize=nc

version to solve. If the reported bugs were not resolved to be the

result of problems with TensorFlow, such bugs were not categorized

as TFB but perhaps other categories.

TFB is further categorized into deadlock (2). Situations leading

to the execution of a tf.function being deadlocked include using

tensors as stopping condition of a recursive tf.function [29]. Dead-

lock may also occur as a result of other, specific tf.function code

patterns—causing the TensorFlow run time to deadlock. For exam-

ple, deadlock may occur when calling a tf.function from within

a tf.py_function [21], which executes native Python functions as

graph operations eagerly [50].

4.1.2 Commits vs. GitHub Issues. Figure 4 compares the different

sources—commits (bottom/blue bars) and GitHub issues (top/red

bars)—of problem categories. Performance—the largest problem

area—was 2/3 more likely to appear in commits vs. issues. In contrast,

“incompatibility” was 2/3 more likely to appear in issues vs. com-

mits. Notably, 80% of TFB problems were found in GitHub issues

compared to commits. Lastly, all UKN and TST bugs were found in

commits. Section 5 discusses possible reasons for these differences.

4.2 Qualitative Analysis

This section answers (RQ2) by highlighting bug patterns with ex-

amples, summarizing causes, symptoms, and fixes, and proposing

preliminary best practices and anti-patterns.

4.2.1 Performance. In listing 6, pm() is decoratedwith @tf.function

(line 1). Using tf.function “ensure[s] that the graph for [a] function

is compiled once and not every time it is called, thus gaining in

speed and performance” [18], leading to best practice 1, Fig. 5.

(1) Favor @tf.function on Python functions containing imperative,

otherwise eagerly-executed, DL code to improve performance.

(2) If possible, supply an input_signature argument to tf.function

with the intended shape and types of any input tensors to avert

retracing—a practice similar to that of providing type annotations

to variables in dynamic languages to assist with type inferencing.

(3) When an operation is deemed incompatible with hybridization,

check the documentation to see if additional steps are required to

make the imperative DL code more amenable to graph conversion.

(4) Framework limitations may impede performance enhancements.

Check for potential workarounds of (unresolved) TensorFlow bugs.

(5) Use tf.config.run_functions_eagerly(True) to temporarily

disable tf.function to facilitate debugging.

Figure 5: Preliminary hybridization best practices.

(1) Hybridizing nested functions may cause performance degradation.

Sacrifice some modularity by either hybridizing the top-level func-

tion or refactoring the nested function to a top-level function [84].

(2) Since shared variables must be singleton, using tf.Variables in

tf.functions, either directly or indirectly, may cause run-time

exceptions. Either rewrite the function or do not hybridize it.

(3) Since tf.functions are compiled, using dynamic language features,

e.g., lexical scoping, either directly or indirectly, may lead to run-time

exceptions. Avoid such features in tf.functions where possible.

Figure 6: Preliminary hybridization anti-patterns.

1 - @tf.function
2 + @tf.function(input_signature=[
3 + tf.TensorSpec(shape=(None, self.num_states), dtype=tf.float32),
4 + tf.TensorSpec(shape=(None, self.num_actions), dtype=tf.float32),
5 + tf.TensorSpec(shape=(None, 1), dtype=tf.float32),
6 + tf.TensorSpec(shape=(None, self.num_states), dtype=tf.float32),])
7 def update_weights(s, a, r, sn): # ...

Listing 7: Commit 02a3f297 in DDPG-tf2: Fixed all. . .this should work

While hybridization can enhance the performance of their imper-

ative, otherwise eagerly-executed, DL code, we found that develop-

ers struggled to use it correctly. Some distrusted it, stating, e.g., that

“it does far too much hidden magic” [2]. Others [82] struggled with

uncontrolled retracing (q.v. Sections 2 and 4.1.1), which actually re-

sults in worse performance—speedup of 0.13 in this case—by using

tf.function than not using it: “tfa.image.equalize() uses an inter-

nal scale_channel() function[,] which triggers excessive retracing

. . ..” The problem is related to hybridizing inner functions: “I . . . tried

using @tf.function at the scale_channel() and . . . equalize_image()

level[s], but the further I moved it ‘inside,’ the slower equalize()

became” [85]. The fix involved “using @tf.function at the top-level

of equalize(), which made it run ∼25%–40% faster” The root

cause is that, “using [embedded] functions ([i.e.,] defining func-

tions inside function) will retrace the graph multiple times [as]

the[ir] scope is not [publicly] visible, and the graphs cannot be

cached” [84]. As a modularity mechanism, embedding (nesting)

function definitions is a common idiom in Python, yet, currently,

TensorFlow documentation does not mention this problem. Devel-

opers are left to consider the internals of AutoGraph in writing

performant imperative DL code, leading to anti-pattern 1, Fig. 6.

Input Signatures. Arguments to tf.function(), particularly

involving input tensor shapes, may also influence performance

(q.v. Section 2). Listing 7 portrays an underspecified input signature

(q.v. Section 4.1.1)—one of the most used tf.function parameters

476

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

1 def ndiagquad(funcs, H: int, Fmu, Fvar, logspace: bool = False, **Ys):
2 # Computes N Gaussian expectation integrals of one or more functions ...
3 - def unify(f_list): # Stack a list of means/vars into a full block.
4 - return tf.reshape(tf.concat([tf.reshape(f, (-1, 1)) for f in f_list],
5 - axis=1), (-1, 1, Din))
6 if isinstance(Fmu, (tuple, list)):
7 Din = len(Fmu)
8 + def unify(f_list): # Stack a list of means/vars into a full block.
9 + return tf.reshape(tf.concat([tf.reshape(f, (-1, 1)) for f in f_list],
10 + axis=1), (-1, 1, Din))
11 Fmu, Fvar = map(unify, [Fmu, Fvar]) # both [N, 1, Din]

Listing 8: Commit b65848a2 in GPflow: fix compilation issue. . .

1 - @tf.function
2 def interpolate_bilinear(grid, query_points, indexing="ij", name=None): # ...
3 tf.debugging.assert_equal(query_shape[2], 2, message=
4 "Query points must be size 2 in dim 2.")

Listing 9: Commit 8bab3226 in tensorflow/addons: remove tf.func

that we observed. On lines 2–6, a performance regression was

fixed by adding an input_signature to a weight distribution tf.

function to “make sure it does not recreate graph, which will slow

down training significantly” [40]. The sequence of tf.TensorSpecs

specifies the intended tensor shapes and data types (dtypes) that will

be supplied to update_weights(). Otherwise, a separate (concrete)

function (graph) is instantiated for each inferred input signature,

which may result in retracing, leading to best practice 2, Fig. 5.

4.2.2 Compilation Errors. Consider unify() originally defined on

lines 3–5, listing 8 that accesses Din on line 5. This variable, how-

ever, it is defined after the function definition on line 7—legal due

to Python’s lexical scoping rules. In other words, the value of Din

will come from the calling context. In this case, Din on line 5 is

replaced with the value defined on line 7 due to unify() being

accessed on line 11. The code, though, results in the following (run-

time) NameError on line 5: free variable 'Din' referenced before

assignment in enclosing scope [19]. The problem is that, while it

itself is not a tf.function, ndiagquad() is called by a tf.function

elsewhere—it will also be compiled into a (static) graph (cf. Sec-

tion 4.1.1). Thus, dynamic language features like lexical scoping

are not available in static contexts. As a result, unify() is moved to

line 8, where Din is in its declaration scope. Although Python is a

dynamic language, developers must be aware that certain code will

be compiled to static graphs, leading to anti-pattern 3, Fig. 6.

4.2.3 API Misuse. On line 1 in listing 9, @tf.function is removed

to fix a bug that is causing flaky tests [31]. The problem is deemed

to be that @tf.function and the assert statement on lines 3–4 is

incompatible. The developers express that “removing the decorator

is not ideal, but stability is more important than the [speedup]

we [would] get with [it]” [39]. However, this code likely causes a

race condition because of a missing control dependency following

the assertion. To use the assertion within a tf.function, a control

dependency is required “to block follow-up computation[s] until

the check has executed” as a result of the function being converted

to a (static) graph [49]. This leads to best practice 3, Fig. 5.

4.2.4 TensorFlow Bugs. On line 1, listing 10, @tf.function is once

again removed. The problem is that—with @tf.function—the appli-

cation “can only process one image before” needing to restarted [20],

terminating with the message: ValueError: tf.function-decorated

function tried to create variables on non-first call. Recall

from Section 4.1.1 that shared variables inside a tf.function must

1 - @tf.function
2 def train_step(image):
3 with tf.GradientTape() as tape:
4 outputs = extractor(image)
5 loss = style_content_loss(outputs)
6 loss += total_variation_weight * tf.image.total_variation(image)
7 grad = tape.gradient(loss, image)
8 opt.apply_gradients([(grad, image)])
9 image.assign(clip_0_1(image))

Listing 10: Commit 8bab3226 in neuro-art: Multiple request bugfix. . .

1 - @tf.function
2 def call(self, inputs):
3 """Call `Layer`"""
4 - if not self.initialized:
5 - self._data_dep_init(inputs)
6 + if not self._initialized:
7 + self._initialize_weights(inputs)
8 self._compute_weights() # Recompute weights for each forward pass ...

Listing 11: Commit 16ee6c59 in tensorflow/addons: tf.func for debug

(1) More tool-support for assisting with using tf.function may help

produce reliable yet performant imperative DL code.

(2) Modernize and reformulate existing tensor shape mismatch detec-

tors for imperative DL code and tf.function(...) input shapes.

(3) More formal specification in a design-by-contract (DbC) style may

be helpful for new tool-support aimed to alleviate API misuse.

(4) Testing (dynamic analysis) focused on hybridized (imperative) DL

code that runs under multiple execution modes may localize bugs.

Figure 7: Preliminary hybridization recommendations.

be singleton; a run-time exception ensues otherwise [42]. How-

ever, it is not obvious from listing 10 where the variable creation

occurs—there are no explicit tf.Variables. The developer expresses

that “removing the . . . decorator is a viable workaround but not [a]

best practice,” and that the root cause is an (unresolved) TensorFlow

bug [88]. In terms of listing 10, the problematic line is 8, as “calling

apply_gradients() on an optimizer for the first time will create its

internal variables” [78]. In terms of the framework, it transpires to

be related to software layering, as, “sadly[,] there [is] currently no

public API to just initialize the optimizer state but not [apply it].”

While several developers found workarounds for their particular sit-

uations, imperative DL code such as that in listing 10 have foregone

any potential performance gains from using @tf.function, leading

to best practice 4 and anti-pattern 2 in Figs. 5 and 6, respectively.

4.2.5 Debuggability. To improve debuggability, @tf.function is re-

moved on line 1, listing 11 (cf. Section 4.1.1). However, in the latest

file version, @tf.function has not been replaced. Thus, the devel-

oper may have inadvertently sacrificed permanent performance

gains for temporary debuggability, leading to best practice 5, Fig. 5.

5 DISCUSSION

We summarize and comment on ourmain findings while connecting

them to other research. To help solve the problems, we put forth

preliminary recommendations for practitioners, tool developers,

and researchers. Though our hope is that the findings will shed light

on future tool challenges and that the aforementioned descriptions

and real-world examples will provide sufficient, generalizable, and

actionable contexts, we nonetheless outline potential solutions.

Performance. It is not surprising that performance is our largest

category (finding 1) since hybridization is centrally related to per-

formance enhancement. The volume of performance problems is a

477

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

testament to the struggles developers have in writing performant,

imperative DL code. However, 45.05% of performance problems

(finding 3) were due to existing tf.function usages, suggesting

that developers also struggle with using hybridization effectively

to achieve the performance they desire. A feasible explanation is

that developers must manually decide: (i) where and when to use

tf.function, (ii) the arguments to supply tf.function for their code

to perform optimally, and (iii) which code is amenable to (efficient)

graph conversion and which is not, all of which can be error-prone.

The overarching goal is reliable and performant DL code; re-

liability stems from being able to write DL code in a less error-

prone imperative-style, while performance is achieved in migrating

that code to graph execution at run-time. AutoGraph, as well as

other hybridization technologies, attempt to achieve this goal by

automating the migration process as much as possible—frequently

requiring contextual information from developers as to their in-

tentions and imposing limitations of where the technology can be

used. The end result is a trade-off—one of many typically made by

DL frameworks [57]. As discussed in Section 1, others [60] attempt

to automate the entire migration process—not requiring any con-

textual metadata—but impose new trade-offs, such as necessitating

custom Python interpreters that may not be practical for industrial

applications and support only specific Python constructs.

As AutoGraph and other hybridization technologies are perva-

sively used, as well as being integrated into official distributions of

popular DL frameworks, our suggestion is to retain (and continu-

ally improve upon) hybridization platforms, while simultaneously

posing this problem as one of (API) usability. Our perspective is

that what is needed it tool-support that will guide developers in

using this technology correctly given a particular context, as well

as automated refactoring and other source code transformation

tools that can detect and repair hybridization problems. Such tech-

niques would alleviate hybridization issues well-before they are

seen beyond (production) deployment or after long training ses-

sions, leading to recommendation 1, Fig. 7.

Cao et al. [22] and Zhang et al. [100] also study performance

of DL code and found that a modest portion of non-imperative

TensorFlow program bugs involved performance problems. How-

ever, these problems were caused by confusion with the underlying

computation model, which essentially requires developers to build

graphs manually. In our case, graphs are built automatically. Since

imperative DL code runs eagerly by default, it is understandable

that our study would uncover more performance problems. In fact,

Tambon et al. [90] also observe performance degradation of imper-

ative DL code. Wan et al. [97] found that performance bugs took

the longest average time to fix in blockchain systems.

Per finding 4, developer-supplied arguments to tf.function()

played a major role in performance problems, comprising 25.23%

of performance fixes. Furthermore, per finding 5, a significant per-

centage (18.92%) of performance problems involved parameters

representing input shape specification—one of the most frequently

used tf.function parameters (q.v. Section 4.2.1). Input shape prob-

lems are a central focus of related work [56,66,100] on DL programs;

related studies [55,56,58,100] also found shape problems. A feasible

explanation is that developers are challenged to determine tensor

shapes from all possible call sites statically. We again advocate for

more tool-support in this area, e.g., an adaptation of Lagouvardos

et al. [66] for imperative DL programs focused on hybridization

parameters, leading to recommendation 2 in Fig. 7.

API Misuse. Per finding 6, using the tf.function API inconsis-

tently with its documentation was a major theme. Feasible explana-

tions include: (i) DLAPIs—alongwith their documentation [53]—are

particularly vast and complex [57], (ii) often, documentation con-

sumers (developers) are not software experts [53], (iii) although

developers are writing imperative DL code, there exist situations

where they must nevertheless be cognizant of hybridization limita-

tions, and (iv) error messages may not be helpful. Due to Item (i),

learning how to use DL APIs effectively necessitates a steep learn-

ing curve, especially considering that hybridization is relatively

new. As ML systems have a quick time-to-market [86], develop-

ers may be not have the luxury of time to thoroughly understand

the documentation. This is especially evident in finding 7, with

37.74% of misuses caused by API confusion. Item (ii) has been rec-

ognized by other ML/DL software studies (e.g., [91]). We conjecture

that Item (iii) can also be alleviated with more tool-support, how-

ever, such tool-support in this context may require (e.g., design-

by-contract) formalization of DL API specifications (e.g., modeling

operation limitations in particular contexts), leading to recommen-

dation 3, Fig. 7. A potential downside to recommendation 3 is the

rapid change of ML APIs [32]. For Item (iv), developers often ex-

pressed frustration with error messages, e.g., “the main complexity

in [TensorFlow] 2 is in @tf.function[;] . . . error messages should be

as clear as possible, especially for common problems” [28].

Zhang et al. [99] likewise observed broader API misuse in DL

systems. Nadi et al. [73] also found API misuse despite ample docu-

mentation in the context of cryptography—developers prefer higher-

level documentation. Current hybridization documentation tends to

focus on lower-level details—future research may explore whether

a similar concept will work for DL APIs. Furthermore, our findings

coincide with Jin et al. [61] that many performance bugs are due

performance implication misunderstandings of certain functions.

Incompatibility. Execution incompatibility of particular Python

constructs was also a major theme (q.v. finding 9). Zhang et al.

[99] found a similar problem in DL systems w.r.t. CPU/GPU com-

patibility. We again advocate for more automation to circumvent

such problems. To use hybridization effectively, developers must

understand which constructs are amenable to both eager and graph

execution and make appropriate considerations. Tool-support, e.g.,

IDE recommendations, may be helpful here. To alleviate run-time

errors and unexpected results, we also advocate for more testing

(dynamic analysis) of (imperative) DL code that runs the same code

undermultiple execution modes. Testing of DL systems is an emerg-

ing yet promising area, and testing focusing on (imperative) DL

code hybridization may help to shed light on: (i) where develop-

ers struggle to write performant yet reliable (imperative) DL code

and (ii) potential areas of where hybridization technologies can be

improved. This leads to recommendation 4, Fig. 7.

Commits vs. GitHub Issues. Performance bugs appeared more

in commits than GitHub issues. The reason may be that enhanc-

ing performance typically requires a code change, which can be

benchmarked. Contrarily, “incompatibility” is more difficult to quan-

tify, often resulting in unexpected behavior or run-time errors

(q.v. Fig. 3). Therefore, developers may be more likely to seek ex-

ternal assistance. Developers commonly file GitHub issues against

478

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

TensorFlow; 93.75% of TFB issues are against the TensorFlow subject.

That all UKN and TST bugs appeared in commits may be due to

GitHub issues being easier to categorize than changesets and DL

testing remains an emerging area, respectively.

6 THREATS TO VALIDITY

Subjects may not be representative of DL systems. To mitigate this,

subjects encompass diverse domains and sizes, have been used

in previous studies, and are from a data science-specific dataset

(q.v. Section 3). Various GitHub metrics and DL-related keywords

were used in choosing subjects. Also, hybridization is relatively new;

we expect a larger selection of subjects as it grows in popularity.

Our study involved many hours of manual validation to un-

derstand and categorize bugs. To mitigate bias, we investigated

referenced resources and comments made by developers to help

more fully understand the challenges faced. The NLP of gitcproc

may have missed bug fix changesets. Nevertheless, using it, we were

still able to find 157 bugs (280 overall) that contributed to a rich

bug categorization, best practices, and anti-patterns. Furthermore,

gitcproc has been used previously in other studies (q.v. Section 3).

Hybridization in comparable DL frameworks may have yielded

different challenges. Nevertheless, focusing on TensorFlow enables

us to more thoroughly understand the intricacies involved in using

hybridization effectively. Moreover, TensorFlow is a widely-studied

and popular (industrial) DL framework (q.v. Section 1).

7 RELATEDWORK

Cao et al. [22] characterizing performance bugs in DL systems.

During their analysis of general performance bugs, they also find

that developers often struggle with knowing where to add @tf.

function and how to implement decorated functions for optimal

performance. Beyond performance bugs, our study includes a rich,

hierarchical taxonomy of varying hybridization bug types, includ-

ing input shape mismatches, API misuse, and construct incompati-

bility, whose results include run-time errors, unexpected behavior,

and deadlock. Tambon et al. [90] examine (silent) behavioral bugs

within DL frameworks and their impact on client code. Their work

is reminiscent of our TFB problem category (q.v. Section 4.1.1) and

also note that performance degradation may lead to significant

problems at run-time. While they do not explicitly mention hy-

bridization performance bugs, some of their performance bugs in

imperative DL code may be alleviate by using @tf.function. Zhang

et al. [101] study API change trends in TensorFlow and for which

reasons; our focus is on client code modifications involving hy-

bridization. Baker et al. [15] extract 11 common TensorFlow API

misuse patterns. Only one of the patterns (and corresponding fix

suggestion) involves (a specific use case of) tf.function. In contrast,

our study goes beyond API misuse and entails 12 top-level problem

categories—24 overall—encompassing hybridization challenges.

Zhang et al. [99] present a large-scale empirical study of gen-

eral DL questions on Stack Overflow. Particularly, their “CPU/GPU

incompatibility” problem category resembles our execution mode

incompatibility category. Concerning hybridization, whether the

migrated graph executes on a GPU is typically decided by the un-

derlying DL framework; our focus is on conversion itself. Islam

et al. [56] and Zhang et al. [100] study general DL bug characteris-

tics and present anti-patterns to avoid bugs. Islam et al. [58] study

patterns in which such bugs are fixed. Chen et al. [26] explore

faults in deploying DL models to mobile applications. Nikanjam

and Khomh [74] catalog various design smells in DL systems and

recommend suitable refactorings. Jebnoun et al. [59] correlate code

smells with bugs in DL code. Liu et al. [68] characterize technical

debt in DL frameworks, while Humbatova et al. [55] taxonomize

(functional) faults in DL systems. Arpteg et al. [9] categorize (gen-

eral) SE challenges in DL systems into three areas—development,

production, and organizational. Liu et al. [67] study failed Tensor-

Flow industrial jobs and propose a constraint-based approach for

detecting shape-related errors. Amershi et al. [4] conduct a study

at Microsoft, observing software teams as they developed AI ap-

plications. Lwakatare et al. [69] also classify SE challenges for ML

systems at six different companies, focusing mainly on deployment

issues. Thung et al. [93] examine bugs in three general ML systems,

finding that nonfunctional bugs, of which performance problems

may be categorized, require the most involved fixes. Dilhara et

al. [32] study ML library evolution and its resulting client-code

modifications. And, Dilhara et al. [33] and Tang et al. [91] analyze

repetitive code changes and refactorings made in ML systems, re-

spectively. While valuable, these studies do not deal with challenges

faced in migrating imperative DL code to graph execution.

Several studies involve performance in other contexts. Han and

Yu [52] study configurability and performance. Future work entails

correlating their findings with tf.function arguments. Jin et al. [62]

study performance slowdowns caused by system side inefficiencies.

Bagherzadeh et al. [13] investigate performance in Actor-based sys-

tems. Others study language features. Parnin et al. [77] study Java

generics adoption. Dyer et al. [34] study language feature evolu-

tion. Khatchadourian and Masuhara [64] empirically assess default

methods. There are many general empirical studies. Makhshari and

Mesbah [70] taxonomize development challenges of IoT systems.

Bagherzadeh and Khatchadourian [14] investigate common ques-

tions asked by big data developers, and Khatchadourian et al. [65]

examine the use and misuse of Java streams. Engler et al. [35] and

Tian and Ray [94] study errors in systems code.

8 CONCLUSION & FUTUREWORK

This study advances knowledge of the development challenges in-

volved in migrating imperative DL code to graph execution via

hybridization. A hierarchical taxonomy of common hybridization

challenges was formulated and preliminary recommendations, best

practices, and anti-patterns were proposed. In the future, we will

explore analyzing alternative developer resources, e.g., Stack Over-

flow, and integrating our results into automated bug finders and

refactoring detection approaches [11,95].

ACKNOWLEDGMENTS

We thankManal Zneit, Ye Paing, and Jack Cruse-Mulhall, developers

providing feedback, and the anonymous reviewers for thorough

and insightful comments. Support for this project was provided by

PSC-CUNY Award #638010051, jointly funded by The Professional

Staff Congress and The City University of New York.

479

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita Raja

REFERENCES
[1] Martín Abadi et al. 2016. TensorFlow: a system for large-scale Machine Learn-

ing. In Symposium on Operating Systems Design and Implementation.
[2] 2020. Added jitted ncon. Pull request #623. google/TensorNetwork. Xanadu.

(May 26, 2020). Retrieved 01/10/2022 from https://git.io/J9cMx.
[3] AkshayAgrawal et al. 2019. TensorFlowEager: amulti-stage, Python-embedded

DSL for Machine Learning. (2019). arXiv: 1903.01855 [cs.PL].
[4] Saleema Amershi, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall,

Ece Kamar, Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann.
2019. Software Engineering for Machine Learning: a case study. In Interna-
tional Conference on Software Engineering. Software Engineering in Practice.
IEEE. IEEE, (May 2019), 291–300. doi: 10.1109/ICSE-SEIP.2019.00042.

[5] Apache. 2018. Customer layers (beginners). Apache MXNet documentation.
Retrieved 07/23/2021 from https://mxnet.apache.org/versions/1.7/api/python/
docs/tutorials/packages/gluon/blocks/custom_layer_beginners.html.

[6] Apache. 2021. Hybridize. Apache MXNet documentation. (April 8, 2021).
Retrieved 04/08/2021 from https://mxnet.apache.org/versions/1.8.0/api/
python/docs/tutorials/packages/gluon/blocks/hybridize.html.

[7] Apache Software Foundation. 2021. Open Deep Learning compiler stack.
(December 1, 2021). Retrieved 12/01/2021 from https://git.io/JMric.

[8] Apple Inc. 2021. Core ML tools. (December 1, 2021). Retrieved 12/01/2021
from https://git.io/JMr61.

[9] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch. 2018. Software Engineer-
ing challenges of Deep Learning. In Euromicro Conference on Software Engineer-
ing and Advanced Applications. IEEE, 50–59. doi: 10.1109/SEAA.2018.00018.

[10] Deeksha Arya, Wenting Wang, Jin L. C. Guo, and Jinghui Cheng. 2019. Anal-
ysis and detection of information types of open source software issue dis-
cussions. In International Conference on Software Engineering. (May 2019),
454–464. doi: 10.1109/ICSE.2019.00058.

[11] Hassan Atwi, Bin Lin, Nikolaos Tsantalis, Yutaro Kashiwa, Yasutaka Kamei,
Naoyasu Ubayashi, Gabriele Bavota, and Michele Lanza. 2021. PyRef: refac-
toring detection in Python projects. In International Working Conference on
Source Code Analysis and Manipulation. doi: 10.1109/SCAM52516.2021.00025.

[12] Hlib Babii, Julian Aron Prenner, Laurin Stricker, Anjan Karmakar, Andrea
Janes, and Romain Robbes. 2021. Mining software repositories with a collabo-
rative heuristic repository. In International Conference on Software Engineering
(ICSE-NIER ’21). IEEE, 106–110. doi: 10.1109/ICSE-NIER52604.2021.00030.

[13] Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and RaffiKhatchadourian.
2020. Actor concurrency bugs: a comprehensive study on symptoms, root
causes, API usages, and differences. Proc. ACM Program. Lang., 4, OOPSLA,
Article 214, (November 2020), 1–32. doi: 10.1145/3428282.

[14] Mehdi Bagherzadeh and Raffi Khatchadourian. 2019. Going big: a large-scale
study on what big data developers ask. In Joint Meeting on European Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering. ACM, 432–442. doi: 10.1145/3338906.3338939.

[15] Wilson Baker, Michael O’Connor, Seyed Reza Shahamiri, and Valerio Ter-
ragni. 2022. Detect, fix, and verify TensorFlow API misuses. In International
Conference on Software Analysis, Evolution and Reengineering, 1–5.

[16] Houssem Ben Braiek, Foutse Khomh, and Bram Adams. 2018. The open-
closed principle of modern Machine Learning frameworks. InMining Software
Repositories, 353–363. isbn: 978-1-4503-5716-6. doi: 10.1145/3196398.3196445.

[17] S. Biswas, M. J. Islam, Y. Huang, and H. Rajan. 2019. Boa meets Python: a
Boa dataset of Data Science software in Python language. In Mining Software
Repositories, 577–581. doi: 10.1109/MSR.2019.00086.

[18] 2021. bug boxsize=nc. modichirag/galference. af1664e. UC Berkeley. (April 16,
2021). Retrieved 01/10/2022 from https://git.io/J9ciM.

[19] 2020. Bug fix: compilation issue quadrature. Pull request #1418. GPflow/GPflow.
Cambridge University. (April 8, 2020). Retrieved 01/14/2022 from https://
github.com/GPflow/GPflow/pull/1418#issue-596552141.

[20] 2020. Bug in TensorFlow only allows it to run once. Issue #13.MLH-Fellowship/neuro-
art. MLH Fellowship. (November 10, 2020). Retrieved 01/13/2022 from https:
//github.com/MLH-Fellowship/neuro-art/issues/13.

[21] 2019. Calling tf.function from tf.py_function in dataset.map hangs. (Septem-
ber 11, 2019). Retrieved 01/05/2022 from https://git.io/JSSBw.

[22] Junming Cao, Bihuan Chen, Chao Sun, Longjie Hu, and Xin Peng. 2021.
Characterizing performance bugs in Deep Learning systems. (December 3,
2021). arXiv: 2112.01771 [cs.SE].

[23] Casey Casalnuovo, Yagnik Suchak, Baishakhi Ray, and Cindy Rubio-González.
2017. GitcProc: a tool for processing and classifying GitHub commits. In
International Symposium on Software Testing and Analysis (ISSTA ’17). ACM,
396–399. doi: 10.1145/3092703.3098230.

[24] Tatiana Castro Vélez, Raffi Khatchadourian, Mehdi Bagherzadeh, and Anita
Raja. Challenges in migrating imperative DL programs to graph execution:
an empirical study. Zenodo, (March 31, 2022). doi: 10.5281/zenodo.5601987.

[25] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: a flexible and

efficient Machine Learning library for heterogeneous distributed systems. In
Workshop on Machine Learning Systems at NIPS. arXiv: 1512.01274 [cs.DC].

[26] Zhenpeng Chen, Huihan Yao, Yiling Lou, Yanbin Cao, Yuanqiang Liu, Haoyu
Wang, and Xuanzhe Liu. 2021. An empirical study on deployment faults
of Deep Learning based mobile applications. In International Conference on
Software Engineering. ACM/IEEE. IEEE. doi: 10.1109/icse43902.2021.00068.

[27] François Chollet. 2020. Deep Learning with Python. (2nd edition). Manning.
[28] 2019. Cryptic error message when assigning to a variable in a tf.function.

Issue #30768. tensorflow/tensorflow. (July 21, 2019). Retrieved 01/17/2022
from https://github.com/tensorflow/tensorflow/issues/30768.

[29] 2021. Deadlock on recursive tf.function-decorated function. Issue #35540.
(October 8, 2021). Retrieved 01/05/2022 from https://git.io/JSS4P.

[30] 2021. Deep Learning examples. NVIDIA. (March 1, 2021). Retrieved 05/05/2021
from https://git.io/J2vFG.

[31] 2019. Dense image warp tests are flaky. AWS. (April 3, 2019). Retrieved
01/13/2022 from https://github.com/tensorflow/addons/issues/138#issue-
428951400.

[32] MalindaDilhara, Ameya Ketkar, andDannyDig. 2021. Understanding software-
2.0: a study of Machine Learning library usage and evolution. ACM Transac-
tions on Software Engineering and Methodology. doi: 10.1145/3453478.

[33] Malinda Dilhara, Ameya Ketkar, Nikhith Sannidhi, and Danny Dig. 2022.
Discovering repetitive code changes in Python ML systems. In International
Conference on Software Engineering (ICSE ’22). To appear.

[34] Robert Dyer, Hridesh Rajan, Hoan Anh Nguyen, and Tien N. Nguyen. 2014.
Mining billions of AST nodes to study actual and potential usage of Java
language features. In International Conference on Software Engineering, 779–
790. isbn: 978-1-4503-2756-5.

[35] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin
Chelf. 2001. Bugs as deviant behavior: a general approach to inferring errors
in systems code. In Symposium on Operating Systems Principles (SOSP ’01).
ACM, Banff, Alberta, Canada, 57–72. doi: 10.1145/502034.502041.

[36] 2020. Ensure compatibility with tf.function. secondmind-labs/trieste. Issue
#90. Secondmind Labs. (December 2, 2020). Retrieved 11/08/2021 from https:
//github.com/secondmind-labs/trieste/issues/90.

[37] Facebook Inc. 2019. PyTorch documentation. TorchScript. en. Retrieved 02/19/2021
from https://pytorch.org/docs/stable/jit.html.

[38] 2021. Fit bug in Blatt-Weisskopf; update Dalitz decomposition. Apoluekt/AmpliTF.
d02db12. CERN. (July 19, 2021). Retrieved 01/03/2022 from https://git.io/JSi9f.

[39] 2019. FIX: dense image warp bug. (April 17, 2019). Retrieved 01/13/2022 from
https://github.com/tensorflow/addons/pull/187.

[40] 2021. Fixed all . . . this should work. samuelmat19/DDPG-tf2. 02a3f29. ML6.
(February 26, 2021). Retrieved 01/12/2022 fromhttps://github.com/samuelmat19/
DDPG-tf2/commit/02a3f297#r47584455.

[41] GitHub, Inc. 2021. Search. REST API Reference. GitHub Docs. Retrieved
12/02/2021 from https://docs.github.com/en/rest/reference/search.

[42] Google LLC. 2021. Better performance with tf.function. (February 4, 2021).
Retrieved 02/19/2021 from https://tensorflow.org/guide/function.

[43] Google LLC. 2022. Introduction to graphs and tf.function. (January 19, 2022).
Retrieved 01/20/2022 from https://tensorflow.org/guide/intro_to_graphs.

[44] Google LLC. 2021. Introduction to variables. TensorFlow core. (November 11,
2021). Retrieved 01/03/2022 from https://www.tensorflow.org/guide/variable.

[45] Google LLC. 2021. IREE: intermediate representation execution environment.
(December 1, 2021). Retrieved 12/01/2021 from https://git.io/JMrPT.

[46] Google LLC. 2021. Migrate your TensorFlow 1 code to TensorFlow 2. Auto-
matic conversion script. TensorFlowCore. (May 27, 2021). Retrieved 05/27/2021
from https://tensorflow.org/guide/migrate#automatic_conversion_script.

[47] Google LLC. 2021. Random number generation. Interaction with tf.function.
TensorFlow Core. (November 16, 2021). Retrieved 01/07/2022 from https :
//tensorflow.org/guide/random_numbers#interaction_with_tffunction.

[48] Google LLC. 2021. tf.compat.v1.Session. (May 14, 2021). Retrieved 07/06/2021
from https://tensorflow.org/api_docs/python/tf/compat/v1/Session#run.

[49] Google LLC. 2021. tf.debugging.assert_equal. Retrieved 01/13/2022 from https:
//tensorflow.org/api_docs/python/tf/debugging/assert_equal#returns.

[50] Google LLC. 2021. tf.py_function. Version 2.7.0. (November 5, 2021). Retrieved
01/05/2022 from https://tensorflow.org/api_docs/python/tf/py_function.

[51] Google LLC. 2021. tf.random.set_seed. (December 4, 2021). Retrieved 01/03/2022
from https://tensorflow.org/api_docs/python/tf/random/set_seed.

[52] Xue Han and Tingting Yu. 2016. An empirical study on performance bugs for
highly configurable software systems. In International Symposium on Empirical
Software Engineering and Measurement. doi: 10.1145/2961111.2962602.

[53] Y. Hashemi, M. Nayebi, and G. Antoniol. 2020. Documentation of Machine
Learning software. In International Conference on Software Analysis, Evolution
and Reengineering. (February 2020). doi: 10.1109/SANER48275.2020.9054844.

[54] Horace He. 2019. The state ofMachine Learning frameworks in 2019. Retrieved
04/01/2021 from https://thegradient.pub/state- of-ml- frameworks- 2019-
pytorch-dominates-research-tensorflow-dominates-industry.

[55] Nargiz Humbatova, Gunel Jahangirova, Gabriele Bavota, Vincenzo Riccio,
Andrea Stocco, and Paolo Tonella. 2020. Taxonomy of real faults in Deep

480

Challenges in Migrating Imperative Deep Learning Programs to Graph Execution MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

Learning systems. In International Conference on Software Engineering. doi:
10.1145/3377811.3380395.

[56] Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. 2019. A
comprehensive study onDeep Learning bug characteristics. In JointMeeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. (August 2019). doi: 10.1145/3338906.3338955.

[57] Md Johirul Islam, Hoan Anh Nguyen, Rangeet Pan, and Hridesh Rajan. 2019.
What do developers ask about ML libraries? a large-scale study using Stack
Overflow. (2019). arXiv: 1906.11940 [cs.SE].

[58] Md Johirul Islam, Rangeet Pan, Giang Nguyen, and Hridesh Rajan. 2020.
Repairing Deep Neural Networks: fix patterns and challenges. In International
Conference on Software Engineering. doi: 10.1145/3377811.3380378.

[59] Hadhemi Jebnoun, Houssem Ben Braiek, Mohammad Masudur Rahman, and
Foutse Khomh. 2020. The scent of Deep Learning code: an empirical study. In
Mining Software Repositories. doi: 10.1145/3379597.3387479.

[60] Eunji Jeong, Sungwoo Cho, Gyeong-In Yu, Joo Seong Jeong, Dong-Jin Shin,
Taebum Kim, and Byung-Gon Chun. 2019. Speculative symbolic graph exe-
cution of imperative Deep Learning programs. SIGOPS Oper. Syst. Rev., 53, 1,
(July 2019), 26–33. issn: 0163-5980. doi: 10.1145/3352020.3352025.

[61] Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan Lu. 2012.
Understanding and detecting real-world performance bugs. In Programming
Language Design and Implementation. doi: 10.1145/2254064.2254075.

[62] Hui Jin, Kan Qiao, Xian-He Sun, and Ying Li. 2011. Performance under failures
of MapReduce applications. In International Symposium on Cluster, Cloud and
Grid Computing. doi: 10.1109/ccgrid.2011.84.

[63] Raffi Khatchadourian. 2021. graph_execution_time_comparison.ipynb. (Feb-
ruary 23, 2021). Retrieved 11/03/2021 from https://bit.ly/3bwrhVt.

[64] Raffi Khatchadourian and Hidehiko Masuhara. 2018. Proactive empirical as-
sessment of new language feature adoption via automated refactoring: the case
of Java 8 default methods. The Art, Science, and Engineering of Programming,
2, 6, 6:1–6:30, 3. doi: 10.22152/programming-journal.org/2018/2/6.

[65] Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Baishakhi Ray.
2020. An empirical study on the use and misuse of Java 8 streams. In Inter-
national Conference on Fundamental Aspects of Software Engineering. ETAPS.
(April 2020), 97–118. doi: 10.1007/978-3-030-45234-6_5.

[66] Sifis Lagouvardos, Julian Dolby, Neville Grech, Anastasios Antoniadis, and
Yannis Smaragdakis. 2020. Static analysis of shape in TensorFlow programs. In
European Conference on Object-Oriented Programming. Volume 166, 15:1–15:29.
doi: 10.4230/LIPIcs.ECOOP.2020.15.

[67] Chen Liu, Jie Lu, Guangwei Li, Ting Yuan, Lian Li, Feng Tan, Jun Yang, Liang
You, and Jingling Xue. 2021. Detecting TensorFlow program bugs in real-world
industrial environment. In International Conference on Automated Software
Engineering. IEEE. doi: 10.1109/ase51524.2021.9678891.

[68] Jiakun Liu, Qiao Huang, Xin Xia, Emad Shihab, David Lo, and Shanping
Li. 2020. Is using Deep Learning frameworks free? Characterizing technical
debt in Deep Learning frameworks. In International Conference on Software
Engineering (ICSE-SEIS ’20). doi: 10.1145/3377815.3381377.

[69] Lucy Ellen Lwakatare, Aiswarya Raj, Jan Bosch, Helena Holmström Olsson,
and Ivica Crnkovic. 2019. A taxonomy of software engineering challenges for
Machine Learning systems: an empirical investigation. In Agile Processes in
Software Engineering and Extreme Programming, 227–243. doi: 10.1007/978-3-
030-19034-7_14.

[70] Amir Makhshari and Ali Mesbah. 2021. IoT bugs and development challenges.
In International Conference on Software Engineering. ACM/IEEE. IEEE, (May
2021). doi: 10.1109/icse43902.2021.00051.

[71] 2020. Migrate to tf.module and add support for SavedModels. Pull request
#603. onnx/onnx-tensorflow. IBM. (July 2, 2020). Retrieved 12/14/2021 from
https://git.io/JDEoD.

[72] Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K. Lee,
Zachary Nado, D. Sculley, Tiark Rompf, and Alexander B. Wiltschko. 2019.
AutoGraph: imperative-style coding with graph-based performance. (2019).
arXiv: 1810.08061 [cs.PL].

[73] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. 2016. “Jumping
through hoops:” why do Java developers struggle with cryptography APIs? In
International Conference on Software Engineering. ACM, (May 2016), 935–946.
doi: 10.1145/2884781.2884790.

[74] Amin Nikanjam and Foutse Khomh. 2021. Design smells in Deep Learning
programs: an empirical study. In International Conference on Software Mainte-
nance and Evolution. IEEE, 332–342. doi: 10.1109/ICSME52107.2021.00036.

[75] NVIDIA Corporation. 2021. TensorRT open source software. (December 1,
2021). Retrieved 12/01/2021 from https://git.io/fjVoO.

[76] Shengyi Pan, Lingfeng Bao, Xiaoxue Ren, Xin Xia, David Lo, and Shanping
Li. 2021. Automating developer chat mining. In International Conference on
Automated Software Engineering. (November 2021), 854–866. doi: 10.1109/
ASE51524.2021.9678923.

[77] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. 2013. Adoption and
use of Java generics. Empirical Softw. Engg., 18, 6, (December 2013), 1047–1089.
issn: 1382-3256. doi: 10.1007/s10664-012-9236-6.

[78] Alexandre Passos. 2019. tf.function-decorated function tried to create variables
on non-first call. (June 11, 2019). Retrieved 01/13/2022 from https://github.
com/tensorflow/tensorflow/issues/27120#issuecomment-500975337.

[79] Adam Paszke et al. 2019. PyTorch: an imperative style, high-performance
Deep Learning library. (December 3, 2019). arXiv: 1912.01703 [cs.LG].

[80] 2021. Performance bottleneck due to tf.function retracing. Issue #74. Ten-
sorFlow. q-optimize/c3. (March 18, 2021). Retrieved 11/08/2021 from https:
//github.com/q-optimize/c3/issues/74.

[81] 2020. Reduce tf.function retracing. Pull Request #100. (August 10, 2020). Re-
trieved 11/08/2021 from https://github.com/keiohta/tf2rl/pull/100.

[82] 2020. Remove @tf.function in tfa.image.equalize. Issue #2263. eomii. (Decem-
ber 3, 2020). Retrieved 01/10/2022 from https://git.io/J9cAb.

[83] 2022. Remove ‘experimental_relax_shapes=true’ to avoid none shape. Univer-
sity of Chinese Academy of Sciences. (January 4, 2022). Retrieved 01/10/2022
from http://github.com/jiangyi15/tf-pwa/commit/0db1#r62889998.

[84] 2020. Remove tf.function decorator in tfa.image.equalize. (December 5, 2020).
Retrieved 01/10/2022 from https://git.io/J9Cft.

[85] 2020. Remove tf.function decorator in tfa.image.equalize. eomii. (December 8,
2020). Retrieved 01/10/2022 from https://git.io/J9chg.

[86] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips, Di-
etmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, and
Dan Dennison. 2015. Hidden technical debt in Machine Learning systems. In
Advances in Neural Information Processing Systems, 2503–2511.

[87] Stack Exchange Inc. 2020. Should I use @tf.function for all functions? Stack
Overflow. (January 21, 2020). Retrieved 11/08/2021 from https://stackoverflow.
com/questions/59847045/should-i-use-tf-function-for-all-functions.

[88] Eric Stavarache. 2019. tf.function-decorated function tried to create vari-
ables on non-first call. Issue #27120. ETH Zürich. (March 25, 2019). Retrieved
01/13/2022 from https://github.com/tensorflow/tensorflow/issues/27120.

[89] 2019. Surprising random seed behavior when using@tf.function. Issue #33297.
(October 13, 2019). Retrieved 01/03/2022 from https://git.io/JSiac.

[90] Florian Tambon, Amin Nikanjam, Le An, Foutse Khomh, and Giuliano Anto-
niol. 2021. Silent bugs in Deep Learning frameworks: an empirical study of
Keras and TensorFlow. (2021). arXiv: 2112.13314 [cs.SE].

[91] Yiming Tang, Raffi Khatchadourian, Mehdi Bagherzadeh, Rhia Singh, Ajani
Stewart, and Anita Raja. 2021. An empirical study of refactorings and technical
debt in Machine Learning systems. In International Conference on Software
Engineering, 238–250. doi: 10.1109/ICSE43902.2021.00033.

[92] Yiming Tang, Allan Spektor, Raffi Khatchadourian, and Mehdi Bagherzadeh.
2022. Automated evolution of feature logging statement levels using Git histo-
ries and degree of interest. Science of Computer Programming, 214, (February 1,
2022), 102724. doi: 10.1016/j.scico.2021.102724.

[93] Ferdian Thung, Shaowei Wang, David Lo, and Lingxiao Jiang. 2012. An empir-
ical study of bugs in Machine Learning systems. In International Symposium
on Software Reliability Engineering. doi: 10.1109/ISSRE.2012.22.

[94] Yuchi Tian and Baishakhi Ray. 2017. Automatically diagnosing and repairing
error handling bugs in C. In Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. ACM,
752–762. doi: 10.1145/3106237.3106300.

[95] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig. 2020. RefactoringMiner
2.0. IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2020.3007722.

[96] Anthony J. Viera and Joanne M. Garrett. 2005. Understanding interobserver
agreement: the kappa statistic. Family medicine, 37, 360–363, 5.

[97] Zhiyuan Wan, David Lo, Xin Xia, and Liang Cai. 2017. Bug characteristics
in blockchain systems: a large-scale empirical study. In Mining Software
Repositories. IEEE, (May 2017), 413–424. doi: 10.1109/MSR.2017.59.

[98] Wenting Wang, Deeksha Arya, Nicole Novielli, Jinghui Cheng, and Jin L.C.
Guo. 2020. ArguLens: anatomy of community opinions on usability issues
using argumentation models. In Conference on Human Factors in Computing
Systems (CHI ’20). ACM, (April 2020). doi: 10.1145/3313831.3376218.

[99] Tianyi Zhang, Cuiyun Gao, Lei Ma, Michael Lyu, and Miryung Kim. 2019.
An empirical study of common challenges in developing Deep Learning
applications. In International Symposium on Software Reliability Engineering.
(October 2019). doi: 10.1109/ISSRE.2019.00020.

[100] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang.
2018. An empirical study on TensorFlow program bugs. In International Sym-
posium on Software Testing and Analysis. doi: 10.1145/3213846.3213866.

[101] Zejun Zhang, Yanming Yang, Xin Xia, David Lo, Xiaoxue Ren, and John
Grundy. 2021. Unveiling the mystery of API evolution in Deep Learning
frameworks: a case study of TensorFlow 2. In International Conference on
Software Engineering (ICSE-SEIP). doi: 10.1109/ICSE-SEIP52600.2021.00033.

[102] Jiayuan Zhou, Shaowei Wang, Cor-Paul Bezemer, Ying Zou, and Ahmed E.
Hassan. 2021. Studying the association between bountysource bounties and
the issue-addressing likelihood of GitHub issue reports. IEEE Trans. Softw. Eng.,
47, 12, (December 2021), 2919–2933. doi: 10.1109/TSE.2020.2974469.

[103] Weijie Zhou, Yue Zhao, Guoqiang Zhang, and Xipeng Shen. 2020. HARP: holis-
tic analysis for refactoring Python-based analytics programs. In International
Conference on Software Engineering, 506–517. doi: 10.1145/3377811.3380434.

481

