
An Empirical Study of Refactorings and Technical
Debt in Machine Learning Systems

Yiming Tang∗, Raffi Khatchadourian†∗, Mehdi Bagherzadeh‡, Rhia Singh§, Ajani Stewart†, Anita Raja†∗
∗CUNY Graduate Center, †CUNY Hunter College, ‡Oakland University, §CUNY Macaulay Honors College

Email: ytang3@gradcenter.cuny.edu, raffi.khatchadourian@hunter.cuny.edu, mbagherzadeh@oakland.edu,
rhia.singh@macaulay.cuny.edu, ajani.stewart42@myhunter.cuny.edu, anita.raja@hunter.cuny.edu

Abstract—Machine Learning (ML), including Deep Learning
(DL), systems, i.e., those with ML capabilities, are pervasive in
today’s data-driven society. Such systems are complex; they are
comprised of ML models and many subsystems that support
learning processes. As with other complex systems, ML systems
are prone to classic technical debt issues, especially when such
systems are long-lived, but they also exhibit debt specific to these
systems. Unfortunately, there is a gap of knowledge in how ML
systems actually evolve and are maintained. In this paper, we fill
this gap by studying refactorings, i.e., source-to-source semantics-
preserving program transformations, performed in real-world,
open-source software, and the technical debt issues they alleviate.
We analyzed 26 projects, consisting of 4.2 MLOC, along with
327 manually examined code patches. The results indicate that
developers refactor these systems for a variety of reasons, both
specific and tangential to ML, some refactorings correspond to
established technical debt categories, while others do not, and
code duplication is a major crosscutting theme that particularly
involved ML configuration and model code, which was also the
most refactored. We also introduce 14 and 7 new ML-specific
refactorings and technical debt categories, respectively, and put
forth several recommendations, best practices, and anti-patterns.
The results can potentially assist practitioners, tool developers,
and educators in facilitating long-term ML system usefulness.

Index Terms—empirical studies, refactoring, machine learning
systems, technical debt, software repository mining

I. INTRODUCTION

In the big data era, Machine Learning (ML), including
Deep Learning (DL), systems are pervasive in modern society.
Central to these systems are dynamic ML models, whose
behavior is ultimately defined by their input data. However,
such systems do not only consist of ML models; instead, ML
systems typically encompass complex subsystems that support
ML processes [1]. ML systems—like other long-lived, complex
systems—are prone to classic technical debt [2] issues; yet,
they also exhibit debt specific to such systems [3]. While
work exist on applying software engineering (SE) rigor to ML
systems [4]–[12], there is generally a gap of knowledge in
how ML systems actually evolve and are maintained. As ML
systems become more difficult and expensive to maintain [1],
understanding the kinds of modifications developers are re-
quired to make to such systems—our overarching research
question—is of the utmost importance.

To fill this gap, we performed an empirical study on com-
mon refactorings, i.e., source-to-source semantics preserving
program transformations—a widely accepted mechanism for
effectively reducing technical debt [13]–[16]—in real-world,

open-source ML systems. We set out to discover (i) the kinds of
refactorings—both specific and tangential to ML—performed,
(ii) whether particular refactorings occurred more often in
model code vs. other supporting subsystems, (iii) the types of
technical debt being addressed and whether they correspond
to established ML-specific technical debt [1], and (iv) whether
any new—potentially generalizable—ML-specific refactorings
and technical debt categories could be derived.

Knowing the kinds of refactorings and technical debt
typically associated with ML systems can, e.g., help improve
existing—and drive new ML-specific—automated refactoring
techniques, IDE code completion, and automated refactoring
mining approaches. In general, the results (i) advance knowl-
edge of how and why technical debt is actually manifested in
ML systems and how refactorings are employed to alleviate
such debt, (ii) help tool designers comprehend the struggles
developers have with evolving ML systems, (iii) propose pre-
liminary recommendations, best practices, and anti-patterns for
practitioners in evolving long-lasting ML systems effectively,
and (iv) assist educators in teaching techniques for combating
technical debt in ML systems.

Our study involved analyzing 26 projects, consisting of
4.2 MLOC, along with 327 manually examined code patches.
Refactorings were taxonomized, labeled as being performed
in ML code or not, and related to the ML-specific debt they
alleviated. Our study indicates that (i) duplicate code elimi-
nation—largely performed by introducing inheritance—was a
major crosscutting theme in ML system refactoring that mainly
involved ML configuration and model code, which was also the
most refactored code, (ii) subtle variation of different yet related
ML algorithms and their configurations were a major force
driving code duplication, (iii) code generalization, reusability,
and external interoperability—essential SE concepts—were
among the least performed refactorings, and (iv) configuration,
duplicate model code, and plain-old-data types were the most
addressed technical debt.

Our contributions can be summarized as follows:
Refactoring hierarchical taxonomy From 327 patches of 26

projects manually examined, we build a rich hierarchical,
crosscutting taxonomy of common generic and ML-
specific refactorings, whether they occur in ML-related
code—code specific to ML-related tasks (e.g., classifiers,
feature extraction, algorithm parameters)—and the ML-
specific technical debt they address.



TABLE I: Studied subjects.

subject dom appl KLOC studied per cmts kws exe

AffectiveTweets NLP Social 5.59 2016–2019 308 1 1
CoreNLP NLP Speech 546.70 2013–2020 15,561 132 40
DataCleaner Analyt. Vis. 144.61 2008–2020 6,692 73 19
deeplearning4j DL Math 547.03 2019–2020 675 24 16
DigitRecognizer CV Images 1.29 2017–2018 69 2 2
elasticsearch Search Outliers 1,585.82 2010–2020 50,551 845 34
elki Data mine Various 189.93 2005–2020 9,993 754 58
Foundry ML AI 245.23 2011–2019 372 2 1
grobid NLP Text 661.28 2012–2020 1,825 18 7
jenetics GP Optim. 87.61 2008–2020 9,966 93 11
knime-core Analyt. Vis. 215.41 2005–2020 17,336 110 10
liblevenshtein NLP Text 7.48 2014–2016 244 2 2
mahout Dist. ML Math 122.06 2008–2020 4,391 84 24
Mallet NLP Text 76.90 2008–2019 693 8 6
moa Data mine Streams 100.62 2009–2019 1,145 3 2
modernmt MT Speech 37.83 2015–2020 3,187 128 21
Mutters NLP Bots 7.76 2016–2020 196 8 4
neo4j-nlp NLP DB 15.88 2016–2019 703 67 8
neuronix CV Biomed 3.33 2017–2018 143 3 3
smile ML Stats 101.95 2014–2020 1,853 115 11
submarine Dist. DL Workflow 45.11 2019–2020 240 2 1
tablesaw Analyt. Vis. 50.13 2015–2020 2,263 26 6
Trainable Seg CV Images 23.42 2010–2019 1,274 1 1
vespa Dist. DL Vis. 1,439.60 2016–2020 34,884 349 29
Weka ML Stats 574.41 1999–2020 9,768 20 5

Total 6,879.16 175,839 2,892 327

New ML-specific refactorings & technical debt categories
We introduce 14 and 7 new ML-specific refactorings and
technical debt categories, respectively.

Recommendations, best practices, & anti-patterns We
propose preliminary recommendations, best practices, and
anti-patterns for long-lasting ML system evolution from
our statistical results, as well as an in-depth analysis.

Complete results of our study are available in our dataset [17].

II. METHODOLOGY

We study common ML system refactorings using a (mostly)
manual analysis. Refactorings unique to ML systems are
extracted. From this study, we may find refactorings specific to
ML systems that may assist both engineers and data scientists
in effective evolution and management of ML technical debt.

A. Subjects

Our study involves 26 open-source ML systems (tab. I),
comprising ∼4.2 million lines of source code, 175,839 Git
commits, and 183.76 years of combined project history,
averaging 7.07 years per subject. They vary widely in their
domain (column dom) and application (column appl), as well
as size and popularity. All subjects have their sources publicly
available on GitHub, exhibit non-trivial metrics, including stars,
forks, and number of collaborators, and include a mix of ML
libraries, frameworks, and applications. They have also been
used in previous studies [18]–[28].

Subject criteria includes having at least one commit whose
log message mentions “refactor,” and at least a portion of
the system must involve ML. We favored ML systems that
were mostly written in Java, which—especially as a support-
ing language—is popular for large-scale ML [29]. However,
although supporting subsystems were mainly written in Java,
model code may be written in other languages, such as Python
and C++. This was done to facilitate refactoring determination
(statically-typed, single-parent inheritance) both manually and

via the aid of assisting tools [30];1 regardless of language,
model and non-model code, alike, were manually examined.

To find changesets (patches) representing refactorings, we
mined repositories for commit logs mentioning keywords;
column kws of tab. I is the number of commits containing
“refactor” in their log messages. While this may represent a
proper subset of actual refactorings, this yielded 2,892 commits
across 26 projects. We then randomly selected a subset of these
commits to examine manually, as portrayed by column exe.

B. Commit Mining

To discover commits with changesets that included refac-
torings, we searched the commit logs, which were extracted
via git log. A single keyword “refactor” was queried via the
regular expression \b(?i)refactor, which matches strings
containing the word refactor in a case-insensitive ((?i))
manor. The \b at the beginning of the expression indicates
a word boundary at the start of the term. This allows the
expression to match the term “Refactoring” but not, for example,
“ArabicFeatureFactory”—a class in CoreNLP.

C. Refactoring Identification

Random matching commits were chosen for manual inspec-
tion to verify whether they contained one or more refactorings;
automated tools were not used in this process. Two of the
authors are software engineering and programming language
professors with extensive expertise in software evolution, tech-
nical debt, and empirical software engineering. Another author
is a data mining and machine learning professor with substantial
proficiency in artificial intelligence and software engineering.
Although the researchers did not converse during the initial
identification and classification process to avoid bias, this mix of
expertise is effective in studying software engineering tasks in
machine learning systems. The researchers convened regularly
during the study, as well as at the end for finalization, to solidify
the results. Cohen’s Kappa coefficients [31] for refactoring
identification, classification, and ML-related code identification
were 0.64, 0.41, and 0.83, respectively.2 As the authors did
not always have detailed knowledge of the particular systems,
only changes where a refactoring was extremely likely were
marked as such. The authors also used commit comments and
referenced bug databases to ascertain whether a change was a
refactoring, a common practice [32]–[34]. Type annotations—
when available—were also helpful in assessing semantics-
preservation—a key characteristic of refactorings.

Only master branches were used. Refactorings in all parts
of the system were considered, as opposed to only modules
responsible for ML. This is done because “only a small fraction
of real-world ML systems is composed of ML code” [1].

D. Refactoring Classification

Once refactorings were identified, to comprehend the kinds
of refactorings performed in ML systems, the authors studied
the code changes to determine the refactoring category, whether

1RefactoringMiner [30] was only used for classification (cf. §II-D).
2Moderate agreement is expected; the team has mixed ML/SE expertise.



the refactoring took place in ML subsystems (ML-related
code), and the ML-specific technical debt category, if any, the
refactoring addresses. The ML-specific technical debt category
may coincide with one put forth by Sculley et al. [1], or it
may be a new ML-specific technical debt category of our own
devise. Islam et al. [10] also make ML-specific categorizations
in their work. Categories were then formed into a hierarchy.

To assist in the classification, fortunately, many commits ref-
erence bug reports detailing the task-at-hand. This information
proved highly valuable in understanding the refactorings, their
motivations, and how they relate to the system. On several
occasions, we also contacted developers for clarification.

Refactorings combat technical debt, and different refactorings
can reduce different kinds of debt. Therefore, some categories
may appear under different parent categories in the hierarchy.
Also, some of the refactorings were more isolated, i.e., a single
changeset consisted mainly of one type of refactoring. For such
cases, we used a more specific (sub)category where possible.
Conversely, changesets containing several intertwined, related
refactorings were grouped into more general (parent) categories.
For changesets that were difficult to generalize, we relied more
heavily on commit log messages and issue tracker discussions.
To aid the manual verification, RefactoringMiner [30]—
a tool for refactoring detection in commit history—was
occasionally used to help isolate larger commits by identifying
fine-grained refactoring clusters.

We used terms like “cluster” and “train” in the commit log
messages to help identify whether the changesets were related
to ML. We also considered matrix operations to be ML-related.
While such operations may be more general, since the subjects
were ML systems, it is likely that they were being used for
ML. Package names were also used to decipher whether code
was related to ML, e.g., elasticsearch has a specific ML
plug-in, which is directly reflected in the package name.

III. RESULTS

In this section, we mainly summarize the study results using
data—noting trends, exceptions, and unexpected outcomes. §IV,
on the other hand, consolidates and comments on the main
findings and connects the different parts of the results. Related
discussion in §IV is referenced where appropriate.

A. Quantitative Analysis

From the 327 commits manually examined (column exe,
tab. I), we found 285 true refactorings, depicted in column cnt
of tab. II. Of these, 165 appeared in ML-related code (column
MLc, tab. II). Finding these refactorings and understanding
their relevance required a significant amount of manual labor
that may not be feasible in more large-scale, automated studies.

False positives—commits whose logs contained the keyword
but were not refactorings—amounted to 42 (12.84%). Reasons
for false positives varied and included using the keyword in
a different context (e.g., as a reminder, “[s]hould refactor
the training code, though” [35]). Others include situations
where developers liberally used the term “refactor,” i.e., they
were actually adding or altering existing functionality [36].

TABLE II: Discovered refactorings (nonhierarchical).

group category abbr cnt MLc

Generic Defer execution DEF 1 0
Make immutable IMM 1 0
Make more reusable RUS 1 1
Generalization GEN 2 1
Make more interoperable INT 2 2
Simplify regex RGX 2 0
Concurrency CON 4 2
Safety SAF 5 2
Dead code elimination DED 6 4
Make more extensible EXT 11 8
New language feature LNG 14 5
Test TST 15 4
Unknown UKN 15 10
Improve performance PRF 27 18
Duplicate code elimination DUP 33 24
Clean up CLN 48 26
Reorganization ORG 81 41

Total 268 148

ML-specific Make algorithms more visible VIZ 1 1
(new) Make matrix variable names more verbose VRB 1 1

Monitor feature extraction progress MON 1 1
Push down hyperparameters HYP 1 1
Pull up policy PLC 1 1
Remove unnecessary matrix operation RMA 1 1
Replace flags with polymorphic classifier CLS 1 1
Replace flags with polymorphic feature extraction FET 1 1
Replace primitive array with matrix AMT 1 1
Replace with sparse matrix SMT 1 1
Replace primitives with rich prediction PRD 2 2
Replace rich model parameter with primitives RMP 2 2
Replace primitives with rich model parameter PRM 3 3

Total 17 17

Grand Total 285 165

There were also two (0.61%) cases where we were not able
to determine whether the commit was a refactoring due to a
lack of domain knowledge and extremely large commit sizes.

1) Refactoring Categories: From the manual changes, we
devise a set of common refactoring categories. Refactorings
were then grouped into these categories as shown in fig. 1
and tab. II (column abbr is the refactoring’s abbreviation).3

Fig. 1 presents a hierarchical categorization—with varying
levels of detail—of the 285 refactorings found in the ML
system subjects. Refactorings are represented by their category
name, followed by their refactoring counts. Categories without
instances are considered abstract, i.e., they only group together
other categories. Some refactoring categories are crosscutting,
appearing under multiple categories. For this reason, tab. II
portrays a nonhierarchical view of fig. 1, including a column
for each refactoring category regardless of its parent.

Refactorings are separated into two top-level categories
(column group of tab. II), namely, those specifically related
to ML systems (ML-specific) and those tangentially related,
i.e., those that apply to general systems (generic). Categories
in the former division are novel; they were formulated as a
result of this study and are a key contribution of this work.

a) Generic Refactorings: Generic refactorings are further
categorized into those related to code reorganization (ORG; e.g.,
modularization), improving performance (PRF; multi-threading,
variable extraction [5]), those made within test code or making
code more amenable to testing (“Test;” TST), and migration

3All ML-specific refactorings were performed on ML-related code; as such,
column cnt = column MLc for ML-specific refactorings in tab. II.



Fig. 1: Discovered refactorings (hierarchical).

to new language features (LNG; e.g., diamond syntax [37],
multi-catch blocks, enumerated types [38], replacing loops
with streams [39]). Others include duplicate code elimination
(DUP; i.e., where redundant, possibly scattered code is central-
ized), making code more generally applicable (generalization;
GEN), improving safety (SAF; e.g., allocating more memory
for buffers holding tensors), eliminating dead code (DED),
improving concurrency (CON; e.g., adding asynchrony [40]),
regular expression simplification (RGX), making code more
interoperable (INT; e.g., making private APIs public), code
de-generalization (e.g., by removing generics), and defer-
ring execution (DEF; e.g., making processing on-demand).
“Clean up” (CLN) refactorings are general simplifications, e.g.,
removing unnecessary casts, while “unknown” (UKN; see
tab. II) represents situations where the refactoring category was
indeterminable without further domain knowledge or developer
input. Only 5.26% of refactorings had unknown categories.

Generic reorganization (59) was the largest generic category;
its largest subcategory was duplicate code elimination (13).
Generic reorganization duplicate code elimination (13) differs
from generic duplicate code elimination (10) as duplicate code
elimination may or may not be part of a reorganization. For
example, removing duplicate code by introducing inheritance
or extracting methods can be considered a reorganization.

Duplicate code elimination was a major refactoring theme
in ML system evolution, and we conjecture such systems are
more prone to duplication due to slight variations in learning
algorithms (see §IV-A). In general, categories crosscut, e.g.,
performance, because there are different ways to accomplish
technical debt reduction, and there are different debt categories
with the same “fix” (refactoring). Performance improvement
refactorings, for instance, were both generic (PRF), e.g.,
converting reference types to primitives, and ML-specific, e.g.,
making matrices sparse (SMT), leading to finding 1 in fig. 2.



1) Performance improvement and reorganization (e.g., inheritance
introduction) refactorings crosscut concerns, affecting multiple
categories, both specifically and tangentially, associated with
ML systems and were among the most frequent (37.89%).

2) Duplicate code elimination (11.58%) was a major, crosscutting
ML system refactoring theme, combating debt in various ways.

3) We expected more dead code elimination [1]; however, though
it crosscut, it was not usual (2.11%).

4) Making code more generalizable, reusable, and interoperable
with libraries are essential SE tasks that were among the least
performed refactorings (1.4%).

5) Inheritance introduction, appearing under six categories—the
most of any other category—was a common and crosscutting
way to eliminate duplication in ML systems and may be key in
coping with subtle variations intrinsic to various ML algorithms.

6) Despite being the smallest subsystem [1], ML-related code was
refactored the most (57.89%).

7) The majority of performance (66.67%), duplicate code elimina-
tion (72.73%), and extensibility (72.73%) refactorings were in
ML-related code, while new language feature migration (35.71%)
and test-related (26.67%) refactorings were among the least.

8) Although 66.67% of dead code elimination refactorings occurred
in ML-related code, only one removed a dead experimental ML-
related code path.

9) Configuration, duplicate model code, and plain-old-data type
were the most tackled technical debt categories (36.84%, 18.95%,
and 10.53%, respectively).

10) Configuration, duplicate model code, and plain-old-data type
debts were mainly tackled by reorganization (42.86%), dupli-
cation elimination (94.44%), and replacing primitives with rich
model parameters (30%).

11) Dead experimental code paths (1.05%), abstraction (2.11%), and
boundary erosion (2.11%) were among the least addressed debts
introduced by Sculley et al. [1]. Custom data types, duplicate
feature extraction code, and model code reusability (3.16%
combined) were among the least identified new categories.

12) Configuration debt (54.69%) was the most significant category
from Sculley et al. [1], while duplicate model code was the
most substantial of our newly introduced categories (58.06%).

13) Duplicate code elimination was a major refactoring (27.37%)
in reducing ML-specific technical debt, overwhelming related
to configuring and implementing different yet related ML
algorithms (92.31%).

14) Inheritance and other reorganization refactorings were commonly
(28.42%) used to reduce a variety of ML-specific debt, especially
configuration (55.56%).

Fig. 2: Findings.

At 11.58%, duplicate code elimination was the largest
category besides the umbrella-like categories of “clean up”
and “reorganization” and crosscut several categories, meaning
that it combated technical debt in several different ways. This
leads to finding 2, fig. 2—further discussed in §IV-A.

Generic dead code elimination (DED), which may be
accomplished via reorganization or deletion, was another
refactoring that crosscut categories but was not prevalent (only
2.11%). However, we expected to see more of this category, as
eliminating dead experimental code paths was a focal category
of Sculley et al. [1]. ML systems typically use conditional
branches for testing new experimental features and other ML
algorithm improvements. Once branches are irrelevant, either
because they were incorporated or deemed unnecessary, the

corresponding code should be removed, leading to finding 3
in fig. 2. The relation of finding 3 to dead experimental code
paths is discussed below with finding 8.

Generic generalization (GEN) refactorings introduced inher-
itance [41, Ch. 12] and generics [42] and made code more
extensible (EXT), e.g., via extracting parameters [43, Ch. 11]
and interfaces [44], [45]. Such EXT refactorings (3.86%) were
also crosscutting—under generalization, de-generalization, and
reorganization. Code was also made more interoperable (INT)
by externally exposing internal C functions (extern) [46]
and replacing custom data types with standard ones, e.g., to
interface with TensorFlow [47], leading to finding 4, fig. 2.

b) ML-specific Refactorings: ML-specific refactorings are
further divided into several categories corresponding to whether
they involved reorganization (ORG), improving performance
(PRF), e.g., removing unnecessary matrix operations (RMA, 1),
and many new refactorings that we categorized as specifically
applicable to ML-related code. These include replacing primi-
tive types representing learning model parameters with objects
(PRM, 3) and the opposite (RMP, 2), replacing primitive types
representing model outcomes (predictions) with objects (PRD,
2), replacing primitive type arrays with matrix objects (AMT, 1),
monitoring the progress of possibly lengthy feature extraction
(MON, 1), and improving program comprehension by making
the names of variables related to matrix calculations more
verbose (VRB, 1). This last category emerged as we noticed
many matrix calculations—a data structure highly used in ML—
had numerous temporary variables. Improving these variable
names can potentially facilitate matrix calculation evolution.

ML-specific reorganization again involved inheritance intro-
duction. In fact, the “introduce inheritance” category appears
six times in fig. 1, the most of any other category and is mostly
used for duplicate code elimination through reorganization.
This leads to finding 5 of fig. 2—discussed in §IV-B.

Two refactoring categories, both involving the conversion of
“flag,” i.e., intermediate boolean values [48, Ch. 17.2], checking
to polymorphism, further divided ML-specific inheritance
introduction. Specifically, the categories involve replacing many
flags with polymorphic classifier (CLS, 1) and feature extraction
(FET, 1) objects, respectively. These refactorings simplify the
future addition and usage of new classifiers and features.

ML-specific reorganization also included two (new) ML-
specific refactorings related to class hierarchy organization,
namely, “pulling up” (clustering) policies (PLC, 1) and “push-
ing down” hyperparameters (HYP, 1). Learning algorithm
variants may have similarities in their implementation. As
such, PLC refactorings—similar to PULL UP MEMBERS [41,
Ch. 12]—centralize otherwise scattered and duplicated code
among classes representing the different policies (cf. § III-B1a).
Hyperparameters, on the other hand, are used to configure
ML algorithms, and HYP—similar to PUSH DOWN MEM-
BERS—is an ML-specific refactoring where hyperparameters
are separated into individual algorithms. While this adds
some duplication, it may improve cohesion and allow the
hyperparameters to be used in ways more akin to the algorithms
they configure (cf. § III-B2a). Both of these refactorings



Generic refactoring

C
ou

nt

Fig. 3: Discovered generic refactorings (nonhierarchical).

operated on code that previously used inheritance, which is why
there were not categorized under “inheritance introduction.”

2) Generic Refactorings Performed on ML-related Code: As
seen in tab. II, all ML-specific refactorings were made to ML-
related code, i.e., the code directly involved with learning
processes. As there were a significant number of generic
refactorings made to the ML systems, we were also interested
in understanding the kinds of generic refactorings that were
being performed to model code in these systems. While the
ML-specific refactoring categorization aims to unveil new
refactorings specific to ML systems, this section sets forth
to understand which existing refactorings are made to this
code. Such information may provide insight into the struggles
that developers have in maintaining and evolving ML systems
and the refactorings that can help. For comparison purposes,
fig. 3 diagrammatically portrays only the generic refactorings,
including their overall counts (left/blue bars) and counts of the
refactorings appearing in ML-related code (right/red bars).

Larger, more definitive categories with the most ML-related
code changes were performance improvements (66.67%), dupli-
cate code elimination (72.73%), and extensibility improvements
(72.73%). Most of these took place in ML-related code. In
some respects, it surprising that the majority (57.89%) of
all refactorings were performed in ML-related code as ML
subsystems typically the smallest subsystem of ML systems [1],
leading to finding 6, fig. 2. Finding 6 coincides with that of
Dilhara et al. [49]—that developers update ML libraries more
often than traditional libraries. New language feature migration
(LNG) and test-related (TST) refactorings were some of the
least performed on ML code, leading to finding 7 in fig. 2.
Finding 7—and its relation to finding 2—is discussed in §IV-A.

Per finding 3, dead code elimination (2.11%) was minimal;
nevertheless, most such refactorings occurred within ML-related
code (66.67%). One might expect these are the ML-related code
path eliminations discussed by Sculley et al. [1]; however, only
one of the four refactorings did indeed remove an experimental
code path (cf. tab. III), leading to finding 8, fig. 2.

3) ML-specific Technical Debt vs. Refactorings: Recall that
refactorings were classified on three fronts, i.e., their categories

(fig. 1), whether they took place in ML subsystems (tab. II), and
the ML-specific technical debt category, if any, the refactoring
addresses. Tab. III presents the identified ML-specific debt cate-
gorization (rows) and juxtaposes them with their corresponding
refactoring categories (columns; abbreviations from tab. II).
Debt categories are grouped by existing [1] and new categories
that have been formulated as a result of our study.

a) Technical Debt: Finding 9, fig. 2 summarizes the most
tackled debt categories. Configuration and plain-old-data type
ML-specific debt categories are classical [1], while duplicate
model code is new. Configuration debt deals with configurable
ML system options, including the features and data utilized,
algorithm-specific learning settings, pre- and post-processing,
and evaluation methods employed [1]. Duplicate model code
occurs when code duplication exists in core learning code, e.g.,
classification, prediction, and makes adding new and changing
existing learning algorithms error-prone. It is especially prone to
situations where many learning algorithm variants are utilized.
Plain-old-data type debt occurs when rich information used and
produced by ML systems is encoded using primitives, making,
for example, the purpose of hyperparameter indecipherable and
predictions less explainable [1], [50].

Configuration debt was addressed by several refactorings,
e.g., duplication elimination (DUP; 20%), extensibility (EXT;
8.57%). Plain-old-data types was more even and widespread,
spanning six refactorings, including replacing (i) primitives
with rich predictions (PRD; 20%), and (ii) primitive arrays
with matrix objects (AMT; 10%), leading to finding 10.

Dead experimental code paths [1] are those used to proto-
type new learning algorithm variants. If successful, they are
eventually incorporated into the mainline logic, making the
experimental paths irrelevant (and disabled). Leaving such paths
in code hinders developers’ ability to later add new and modify
existing algorithms. Abstraction debt arises from a lack of
standard interfaces and constructs [9] (e.g., those in relational
databases [51]) that may be subtly corrupted or invalidated
by the fact that data influences ML system behavior, while
boundary erosion amounts from a lack of modular boundaries
between ML subsystems [1]. Finding 11—discussed in §IV-C—
summarizes the least tackled debt.

Overall, only three of the categories established by Sculley
et al. [1] were prevalent, i.e., configuration (36.84%), plain-
old-data type (10.53%), and multiple language debt (7.37%).
We also found that duplicate model code (18.95%), model
code comprehension (5.26%), and model code modifiability
(4.21%) were the only prevalent new categories, leading to find-
ing 12. Model code modifiability is specific to ML algorithm
encapsulation as opposed to traditional data encapsulation. ML
developers must incorporate a variety of learning algorithms
that are subsequently evaluated and compared. The inability
to abstract learning algorithm variations and make learning
components extensible may be detrimental to ML systems.

b) Refactorings: Duplicate code elimination (DUP;
27.37%) was among the refactorings that tackled the most
technical debt, spanning such categories as duplicate model
code (65.38% of DUP refactorings), configuration (26.92%),



TABLE III: Discovered ML-specific technical debt vs. refactoring categories.

group technical debt
refactoring AM

T
CLS

FET
GEN

HYP
LNG

M
ON

PLC
RM

A
RUS

SM
T

VIZ VRB
PRD

DED
IN

T
PRF

SAF
CLN

PRM
EXT

DUP
ORG

Total

Existing Dead experimental code paths 1 1
Abstraction 1 1 2
Boundary erosion 2 2
Glue code 1 1 2
Prototype 2 2
Monitoring and testing 1 1 1 3
Multiple languages 1 1 1 2 2 7
Plain-old-data type 1 2 1 1 3 2 10
Configuration 1 1 1 1 1 1 2 2 2 3 7 15 37

Total 1 1 1 1 1 1 1 1 1 2 3 2 3 3 3 5 3 8 25 66

New Custom data types 1 1
Duplicate feature extraction code 1 1
Model code reusability 1 1
Unnecessary model code 1 1
Model code comprehension 1 1 1 1 4
Model code modifiability 5 5
Duplicate model code 17 1 18

Total 1 1 1 1 1 1 5 18 2 31

Grand Total 1 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 4 5 8 26 27 97

Listing 1 Commit 3eba6f26 in Mahout: Refactored Clustering-
Policies into hierarchy under new AbstractClusteringPolicy . . .

1 +public abstract class AbstractClusteringPolicy
2 + implements ClusteringPolicy {
3 + public Vector classify(Vector d, ClusterClassifier p){
4 + List<Cluster> models = p.getModels(); /*..*/ }}
5 public class CanopyClusteringPolicy
6 - implements ClusteringPolicy {
7 + extends AbstractClusteringPolicy {
8 - public Vector classify(Vector d, List<Cluster> models){
9 - Vector pdfs = new DenseVector(models.size());/*..*/}}

10 public class DirichletClusteringPolicy
11 - implements ClusteringPolicy {
12 + extends AbstractClusteringPolicy {
13 - public Vector classify(Vector d, List<Cluster> models){
14 - Vector pdfs = new DenseVector(models.size());/*..*/}}

duplicate feature extraction code (3.85%), and monitoring and
testing (3.85%), which deals with ML evaluation. From these
results, a central theme emerges; code duplication is extensive
in ML systems and presents itself mainly on two fronts—
in configuration and in model code. In other words, code
duplication infects configuring learning algorithms and in the
implementation of the learning algorithms themselves, leading
to finding 13 of fig. 2. Finding 13—in the context of findings 2
and 7—is discussed in §IV-A.

Reorganization—including inheritance introduction—was
also a common way to reduce technical debt in ML systems,
accounting for 28.42% of refactorings combating ML-specific
technical debt. Reorganization also spanned 9/16 technical debt
categories with a major focus on configuration debt (55.56%),
leading to finding 14. Finding 14—along with its relation to
finding 5—is discussed in §IV-B.

B. Qualitative Analysis

We highlight refactorings and ML-specific technical debt
with examples, summarize causes, symptoms, and fixes in
tab. IV, and propose preliminary best practices and anti-patterns.
Rows in tab. IV correspond to debt categories discussed below.

1) Duplicate Model Code Debt:
a) ML→ORG→PLC: Duplicate code elimination domi-

nated the refactorings in ML-related code and crosscut multiple

1) Favor inheritance to abstract learning algorithm variations,
thereby reducing redundant model code.

2) Adding some duplicate code via class hierarchy reorganization
may help focus ML algorithm configuration, especially when
using dependency injection.

3) Favor polymorphism over flags when many ML algorithm
variants exist to reduce to configuration debt.

4) To facilitate ML system evolution, use descriptive (temporary)
variable names, especially for matrices.

5) Since ML has many algorithms for similar tasks [52], restructure
code (e.g., method extraction) for greater reusability among
learning algorithm variants.

6) ML libraries imposing custom numeric data types should include
conversion code to built-in types.

Fig. 4: Best practices.

Listing 2 Commit 59f39c7b in DataCleaner: Refactored
components to have a “Training analyzer” per algorithm.

1 -public class MLTrainingAnalyzer /*...*/ {
2 +public abstract class MLTrainingAnalyzer /*...*/ {
3 - @Configured @NumberProperty(negative=false,zero=false)
4 - int epochs = 10; /*...*/ }
5 +public class RandomForestTrainingAnalyzer extends
6 + MLTrainingAnalyzer {
7 + @Configured @NumberProperty(negative=false,zero=false)
8 + int epochs = 10; /*...*/ }
9 +public class SvmTrainingAnalyzer extends

10 + MLTrainingAnalyzer {
11 + @Configured @NumberProperty(negative=false,zero=false)
12 + int epochs = 10; /*...*/ }

categories. Consider a PULL UP POLICY (PLC) refactoring
in lst. 1. There are multiple classes, e.g., lines 5 and 10,
representing different clustering algorithm policies. Each class
previously implemented a common interface; however, as
interfaces do not contain functionality, an abstract class is
introduced on line 1 that encapsulates the common policy
functionality. As a result, the duplicated model code on
lines 8–9 and 13–14 are replaced with polymorphic calls to
classify() on line 3, leading to best practice 1, fig. 4.

2) Configuration Debt:
a) ML→ORG→HYP: While PLC refactorings centralize

ML-related code, others do the opposite. Consider the PUSH



TABLE IV: Common attributes of ML-specific technical debt categories discussed in §III-B.

debt situation cause symptoms fixes

Duplicate
model code

Code duplication in learning code,
e.g., classification, prediction.

Learning algorithms have many
variants with subtle differences.

Adding new/changing existing
model code is error-prone.

Inheritance introduction, class
hierarchy reorganization.

Configuration Learning algorithms have many
configurable options.

Configuration is treated as an
afterthought [1].

Each configuration line has a
potential for errors.

Class hierarchy reorganization,
duplicate code elimination, etc.

Model code
comprehension

Many temporary matrix variables,
perf vs. comprehension trade-offs.

Variables poorly named,
unnecessarily sacrificing
comprehension.

Reasoning about and evolving
model code is made difficult.

More verbose matrix variable names,
inheritance introduction.

Model code
reusability

Adding new models requires
duplicating existing code.

Model code is insufficiently
modularized.

Reusing existing model code is
made difficult and error-prone.

Reorganization, method extraction.

Unnecessary
model code

Matrix calculations may have
performance bottlenecks.

Unnecessary matrix APIs. Poor performance. Replace expensive APIs with
calculations in existing traversals.

Custom data
types

Project-specific data types used
instead of built-in types in ML.

Library dependencies may impose
custom data types.

Interoperating with other libraries
can be difficult.

Widespread modifications involving
type replacement or conversion.

Listing 3 Commit 32546890 in CoreNLP: merged remote branch
crf stochastic fix, refactored CRFClassifier.

1 + CRFClassifier<CoreLabel> chooseCRFClassifier(
2 + SeqClassifierFlags flags) {
3 + CRFClassifier<CoreLabel> crf = null;
4 + if (flags.useFloat)
5 + crf = new CRFClassifierFloat<CoreLabel>(flags);
6 + else if (flags.nonLinearCRF)
7 + crf = new CRFClassifierNonlinear<CoreLabel>(flags);
8 + else if (flags.numLopExpert > 1)
9 + crf = new CRFClassifierWithLOP<CoreLabel>(flags);

10 + // ...
11 + return crf;
12 + }
13 // ...
14 Properties props=StringUtils.argsToProperties(args);
15 - CRFClassifier<CoreLabel> crf=new CRFClassifier<>(props);
16 + SeqClassifierFlags flags=new SeqClassifierFlags(props);
17 + CRFClassifier<CoreLabel> crf=chooseCRFClassifier(flags);

DOWN HYPERPARAMETERS (HYP) refactoring snippet in lst. 2.
Several hyperparameters (e.g., line 4) were de-centralized from
the parent and copied into subclasses of different learning
algorithms (lines 8 and 12). While adding some duplication, it
“allows us to have much more specific hyperparameters [that]
apply to the particular algorithm instead of trying to make a
one-size-fits-all parameter selection” [53]. Though the field
declarations above are identical, note the annotations on lines 7
and 11. In this case, inheritance may make it more difficult
to configure hyperparameters when, e.g., using dependency
injection and different hyperparameters require varying values,
leading to best practice 2 in fig. 4.

b) ML→ORG→INH→CLS: Configuration debt was the
largest discovered technical debt category. Especially inter-
esting was the management of flags corresponding to ML
configuration parameters, as ML system configuration is
increasingly unwieldy [1], giving way to a configuration
“parameter server” design pattern [54]. Consider the REPLACE
FLAGS WITH POLYMORPHIC CLASSIFIER (CLS) refactoring
in lst. 3, where large portions of parameter flag code in
CRFClassifier were replaced with polymorphic objects. The
factory method chooseCRFClassifier() accepts flags and
returns a subclass instance. Instead of passing flags directly to
the constructor (line 15), a separate SeqClassifierFlags

parameter object is passed to chooseCRFClassifier()

(line 17). Algorithmic flag checking is then replaced with
polymorphism, leading to best practice 3 of fig. 4.

Listing 4 Commit 5c3dcd35 in ELKI: refactoring feature extrac-
tion for images.

1 -for (int k = 0; k < DISTS.length; k++) {
2 +for (int k = 0; k < DISTANCES.length; k++) {
3 - int d = DISTS[k];
4 + int d = DISTANCES[k];
5 - // horizontal
6 + // horizontal neighbor
7 + // TODO Pete: What is sum?
8 sum[k] += 2;

Listing 5 Commit 6dd54317 in ELKI: Huge Pair refactoring.
1 List<Integer> currentCluster = new ArrayList<>();
2 - for (ComparablePair<D, Integer> seed : seeds) {
3 + for (DistanceResultPair<D> seed : seeds) {
4 - Integer nextID = seed.getSecond();
5 + Integer nextID = seed.getID();

3) Model Code Comprehension Debt:
a) ML→VRB: Matrix algebra is central to ML, and

matrix calculations often include the use of many temporary
variables. Consider the MAKE MATRIX VARIABLE NAMES
MORE VERBOSE (VRB) refactoring snippet in lst. 4 that is
performed on feature extraction code for image classification.
On lines 2 and 4, DISTS is renamed to DISTANCES. While
this is a minor refactoring, DISTS may also have referred to
“distributions” in such analytical-based software. Although poor
variable name quality can cause confusion and inhibit effective
software evolution in general, it is especially problematic in
ML systems due to the high reliance on matrix calculations that
may involve many temporary variables thus compounding the
issue. Further refactoring motivation is on lines 6 and 7, where
a comment is diluted and a variable clarification is requested,
leading to best practice 4, fig. 4.

b) GEN→ORG→INH: Model code is particularly
performance-sensitive due to the number of iterations ML sys-
tems typically perform on (large) datasets. In such cases, there
may be trade-offs between performance and comprehension;
however, they can be misguided, sacrificing readability unneces-
sarily. Consider the generic (GEN) refactoring snippet in lst. 5
performed on ML-related code. On line 3, ComparablePair,
which was previously deemed to be more performant, is
replaced with the more specific DistanceResultPair type—
allowing for the more readable getID() accessor on line 5
instead of the more ambiguous getSecond(). The author



1) Unnecessarily sacrificing ML model code clarity for performance
gains.

2) Expensive multidimensional matrix APIs are used for single-
dimensional vectors.

3) Project-specific numeric data types are used in model code,
decreasing interoperability with ML libraries.

Fig. 5: Anti-patterns.

Listing 6 Commit 4432e319 in Mahout: MAHOUT-846: Minor
refactoring to eliminate unnecessary vector.times(SQRT2PI).

1 public double pdf(VectorWritable vw) { // ...
2 Vector s = getRadius().plus(0.0000001);
3 return Math.exp(-(divSquareAndSum(x.minus(m),s)/2))
4 - / zProd(s.times(UncommonDistribs.SQRT2PI));
5 + / zProdSqt2Pi(s);
6 }
7 -private double zProd(Vector s) {
8 +private double zProdSqt2Pi(Vector s) {
9 double prod = 1;

10 for (int i = 0; i < s.size(); i++)
11 - prod *= s.getQuick(i);
12 + prod *= s.getQuick(i) * UncommonDistribs.SQRT2PI;

proclaims the following, leading to anti-pattern 1, fig. 5:
Java performance studies have shown no cost in
making Pair non-final; hotspot-VMs will optimize
that very well. Since we can get getDistance()
and getID() for free, we [a]re go[ing to] use them
to increase readability of the code [55].

For anti-pattern 1, it is understandable that developers
strive for peak runtime performance in model code; it is
beneficial for large datasets to be efficiently processed. How-
ever, performance improvements that degrade code clarify,
particularly in (complex) model code, should be carefully
scrutinized, e.g., via performance testing, for whether they
are, in fact, notably enhancing performance. In the above
example, ComparablePair is a general type containing gen-
eral methods to retrieve consistent components (getFirst()
and getSecond()). These components can represent any
entity in an ML algorithm, but this type was previously
deemed more performant than using a more specific type;
ComparablePair is final, thus disallowing any subtypes
and forgoing multiple dispatch. Performance testing of multiple
alternative constructs, especially in model code, may reveal
particular VMs optimizations, e.g., those that allow for non-
final types that improve readability, such as those with
the more specific method getDistance() that can be used
instead of getSecond(). A consequence of anti-pattern 1 is
that (already) complex model code is made more difficult to
comprehend and consequently difficult to evolve.

4) Model Code Reusability Debt:
a) GEN→ORG→RUS: Essential to ML system evolution

is the addition of new models—ideally—via code reuse. One
generic MAKE MORE REUSABLE (RUS) refactoring in ML-
related code uses method extraction “for code reuse in other
SNN functions” [56], leading to best practice 5, fig. 4.

5) Unnecessary Model Code Debt:
a) ML→PRF→RMA: As model code is performance-

sensitive; seeming innocuous refactorings in such regions can

Listing 7 Commit 19057519 in Deeplearning4j: Refactored
pad and mirror pad ops to conform with TF. (#100)

1 -auto paddings = NDArrayFactory::create<Nd4jLong>({1,0});
2 +auto paddings = NDArrayFactory::create<int>({1LL,0LL});

impact performance [5]. Consider the REMOVE UNNECESSARY
MATRIX OPERATION (RMA) refactoring snippet in lst. 6. This
refactoring helped solve a performance issue [57] related to
Gaussian clustering scalability by “eliminat[ing an] unnecessary
call to vector.times(SQRT2PI)” [58] on line 4. This
matrix API implementation includes several layers of method
calls dealing with multiple dimensions. Since s is a single
dimensional vector, the calculation can instead be inlined
into the existing traversal (line 12), resulting in code that
“is significantly faster with no new [v]ectors created.” [57].
This leads to anti-pattern 2 of fig. 5.

The problem w.r.t. anti-pattern 2 is an impedance mismatch
between the expected API argument’s complexity and the
actual argument. Specifically, APIs processing multidimen-
sional matrices may involve multiple layers of method calls,
which is unnecessary when the actual argument is single-
dimensional. A consequence of anti-pattern 2 is that the added
method call layers can degrade performance, especially in
model code, which is hypersensitive to performance impact
as many iterations of (large) datasets occur in such (critical)
areas. Common contexts of anti-pattern 2 involve model code
dealing with single-dimensional vectors. A common fix for anti-
pattern 2 is to replace the expensive API calls with calculations
using operators (e.g., * for multiplication), inlining those
calculations into existing loops.

6) Custom Data Types Debt:
a) GEN→INT: ML systems may depended on learning li-

braries for which they must interoperate. Using project-specific
(“wrapped”) data types, however, can impede interoperability,
leading to anti-pattern 3, fig. 5. Consider the generic MAKE
MORE INTEROPERABLE (INT) refactoring snippet in lst. 7
performed on ML-related C++ code, where line 2 replaces a
custom data type (Nd4JLong) with a built-in primitive (int).
Although specifying array literals, in this case, may be more
cumbersome (1 vs. 1LL), the code can now freely interoperate
with TensorFlow. Dependencies themselves may impose
custom data types—Nd4jLong is from the highly-related yet
external ND4J scientific computing library—in which case,
conversion code may be necessary.

The issue w.r.t. anti-pattern 3 is that “wrapper” types like
Nd4JLong from scientific computing or native (GPU-oriented)
libraries are used in performance-sensitive model code contexts
to enhance performance in these critical areas. However, there
is a trade-off; such types may not interoperate with other (ML)
libraries and frameworks (e.g., TensorFlow). Moreover,
the custom types may stem from other library dependencies,
possibly making their use necessary. The consequences are
that developers may need to (i) make a difficult choice to
forgo depending on particular libraries, (ii) make widespread
modifications to replace or modify the type, and (iii) write



1) Automated refactorings especially designed for migrating “lin-
ear” ML algorithm and configuration code to use inheritance
constructs may be advantageous in avoiding code duplication.

2) More ML-specific refactoring tool-support may encourage more
refactoring of model and configuration code, potentially reducing
technical debt.

3) More automated client-side matrix calculation refactorings may
replace manual model code performance enhancements.

Fig. 6: Recommendations.

their own conversation code. To alleviate such consequences,
we suggest best practice 6 of fig. 4.

IV. DISCUSSION

A. Code Duplication in Configuration & Model Code

With duplicate code elimination being one of the top overall
and crosscutting refactoring categories (finding 2), as well as
the top refactoring performed on ML-related code (finding 7),
ML systems seem to exhibit a significant amount of code
duplication, particularly in configuration and model code
regions (finding 13). Feasible explanations include (i) data
scientists—potentially untrained as software engineers and thus
not fully aware of advanced modularization techniques—may
be responsible for model code, (ii) model code is highly-config-
urable—containing a substantial number of different yet related
hyperparameters—which are configured in similar ways, and
(iii) many different ML algorithms share a significant amount
of commonality, giving way to code duplication.

Further research is needed to uncover different developer
roles in ML systems to fully understand the phenomenon
underpinning Item (i). As configuration debt was the largest
technical debt category, for Item (ii), it is apparent that ML
code involves many flags, and developers are finding ways to
deal with them so that both comprehension and extensibility are
improved. Configuration debt was a major theme of Sculley et
al. [1]; thus, it was not surprising that the majority of refactor-
ings aim at reducing it. Although parameter servers [54] help,
without language-level modularization techniques, they are
simply moving the problem. As for Item (iii), as demonstrated
in §III-B, language-level modularization techniques can help
reduce some of the redundancy resulting from variant learning
algorithm implementations. While our findings coincide with
those of Lopes et al. [59], i.e., there is a non-trivial amount
of code duplication, their findings are inter-project focused,
whereas ours are intra-project. Also, per finding 7, we find that
most duplication is addressed within ML-code in ML systems,
a comparison between components.

B. Combating Code Duplication Debt in ML Systems

We identified the two ML system areas that exhibit the most
duplication, i.e., configuration and model code. Amershi et
al. [8] also note issues with model code reuse. Fortunately,
per finding 5, inheritance was a centrally used technique
in eliminating code duplication, particularly with algorithm
variations, and finding 14 shows that it was especially useful to
reduce duplicate configuration code. As such, inheritance may

be a key in reducing duplicate code in ML systems. A problem,
however, is that model code is not always written in an Object-
Oriented (OO) style, as scripting languages are popular. Or,
if such code is written in OOP, developers may either not be
aware (i) of inheritance techniques, (ii) that inheritance can help
avoid duplicate code, or (iii) of (or cannot use) tool-supported
refactorings that can help with inheritance introduction. As
such, for ML code currently taking advantage of OO and
especially those either implementing ML algorithm variations or
configuring hyperparameters, more awareness and specialized
tool-support may be necessary, leading to recommendation 1,
fig. 6. More tool-support is also advocated by Arpteg et al. [9],
while Bavota et al. [60] warn against hierarchy refactorings.

Conversely, for situations where code is not written in an OO
style but OO is available, recommendation 1 may help promote
inheritance usage. For example, although dynamic languages,
e.g., Python, are popular for writing model code [61], such
languages may have inheritance mechanisms available, e.g.,
abc [62]. Automated refactorings that are custom-tailored to
ML development may promote more usage of such packages.
Unfortunately, due to the static analysis typically required
in such refactorings, adapting existing automated refactoring
algorithms to dynamic settings is non-trivial. A possible
solution is to leverage a tractable, speculative analysis that
is customized to ML contexts [5] to provide accurate and
useful dynamic resolution.

C. Generic vs. ML-specific Refactorings

Generic refactorings (94.03%) vastly outnumbered those
of our new ML-specific refactorings (5.97%). A feasible
explanation is (i) model code is among the smallest ML subsys-
tems [1]; thus, we would expect less ML-specific refactorings,
(ii) data scientists—potentially not versed in refactoring—may
be responsible for ML-related code maintenance and evolution,
and (iii) a lack of ML-specific automated refactorings may
deter developers as they must refactor manually, leading to
recommendation 2, fig. 6. The lack of ML-specific refactoring
occurrences—along with finding 11—does not necessarily
indicate that technical debt is not present; it may be that it
is simply not being addressed. Also, good solutions for these
problems may not yet exist [1]. Nevertheless, future work
consists of extracting generalizable refactoring exemplars from
the refactorings presented earlier that can serve as a basis for
refactoring preconditions in varying contexts.

D. ML-related Code Performance

Model code needs to be fast; thus, it is not surprising
that 66.67% of performance enhancements occurred in ML-
related code (finding 7). We came across several refactorings
that converted reference types to primitives for performance
reasons. Our findings coincide with that of Kim [11] and
Zhang et al. [18], i.e., performance is essential yet challenging
in ML systems. Additional client-side tool-support focused
on improving matrix calculations (e.g., [5]) may alleviate
developers from making manual performance enhancements,
leading to recommendation 3, fig. 6. Future work also consists



of automating the RMP refactoring (tab. II) by reversing
the approach taken by Khatchadourian [38], which converts
primitives to reference types.

V. THREATS TO VALIDITY

Subjects may not be representative of ML systems. To
mitigate this, subjects encompass diverse domains and sizes and
have been used in previous studies. Various GitHub metrics and
ML-related keywords/tags were used to assess popularity and
in choosing subjects, respectively. Although Java was favored
(cf. §II-A), many subjects were written in multiple languages,
particularly for model code, which was also analyzed. For
example, ∼30% of Deeplearning4j is written in C++.

Our study involved many hours of manual validation to
understand and categorize the refactorings. To mitigate bias,
we investigated referenced bug reports and other comments
from developers to help us understand changes more fully.

Larger refactorings may be non-atomic, spanning multiple
commits [63]–[65]. In such cases, it may be difficult to assess
the task-at-hand for accurate categorization. To mitigate this,
we examined referenced bug tracker reports, which often
mentioned multiple commits, allowing us to understand the
overall goals. It is also possible that developers performed
refactorings but did not mention so in commit log messages,
potentially causing us to miss refactorings. Nevertheless, our
study still involved manually examining 327 commits.

The heuristics applied in determining whether refactorings
were related to ML-code may not be accurate; however, the
researchers thoroughly examined each changeset and conversed
regularly. RefactoringMiner [30], which aided some
manual classification—particularly with larger commits—may
not be accurate. However, all commits were still manually
analyzed, and this tool has been used extensively [66]–[68].

VI. RELATED WORK

Sculley et al. [1] identify common SE issues surrounding
ML systems based on their experiences at Google. Arpteg et
al. [9] also detail several ML-specific technical debt categories.
Our work—in part—can be seen as an open-source data-
driven complement to theirs. In addition to technical debt,
we also explore ML system refactorings, correlate them to ML-
specific technical debt, and introduce 14 and 7 new ML-specific
refactorings and technical debt categories, respectively.

Several studies involve ML and DL systems. Amershi et
al. [8] conduct a study at Microsoft, observing software
teams as they developed AI applications. They also put forth
best practices to address challenges specific to engineering
ML systems; albeit, many are organizational or process-
based. Lwakatare et al. [12] also classify SE challenges for
ML systems at six different companies, focusing mainly on
deployment issues. Zhang et al. [18] present a large-scale
empirical study of DL questions on Stack Overflow. Zhang
et al. [7] and Islam et al. [10] study DL bug characteristics
and present anti-patterns but to avoid bugs. Dilhara et al. [49]
study ML library usage and evolution. In contrast, our focus

is on the non-functional qualities of ML systems, the technical
debt they cause, and the refactorings that address them.

Other work studies and categorizes refactorings. Tsantalis
et al. [30] automatically detect refactorings in commit history;
however, their approach is currently limited to fine-grained
analysis of classical refactorings, supports only Java, which
is problematic for multilanguage ML systems, and does not
correlate technical debt. Kim et al. [36] study refactoring
challenges and benefits at Microsoft, while Vassallo et al.
[69] perform a large-scale refactoring study on open-source
software, and Murphy-Hill et al. [70] study general refactoring
at the IDE level. Sousa et al. [71] characterize composite
refactorings, Hora and Robbes [72] explore the characteristics
of method extraction refactorings, Peruma et al. [73] investigate
refactorings of unit tests in Android, and Bavota et al. [60] and
Ferreira et al. [74] study fault inducing refactoring activities.

Technical debt has also been studied. Tom et al. [2] propose
the concept for general systems. Potdar and Shihab [75] explore
self-admitted, e.g., via code comments, technical debt (SATD),
while Bavota and Russo [76] investigate the diffusion and
evolution of SATD and its relationship with software quality.
Huang et al. [77] and Rantala et al. [78] identify SATD
using advanced techniques, and Christians [79] examines the
relation between SATD and refactoring in general systems. The
refactorings we have identified that correlate to debt categories
may be considered a form of (ML-specific) SATD. Code smells
can also indicate technical debt, and Aversano et al. [68] study
the evolution of smells and their tendencies to be refactored.

There are many empirical studies of software [80]. Lopes et
al. [59] study (inter-project) code duplication. Mazinanian et
al. [67] research lambda expressions in Java, Khatchadourian
and Masuhara [24] explore refactoring as a proactive tool for
empirically assessing new language features, Bagherzadeh and
Khatchadourian [81] investigate common questions asked by
big data developers, and Khatchadourian et al. [22] examine
the use and misuse of Java streams.

VII. CONCLUSION & FUTURE WORK

This study advances knowledge of refactorings performed
and the technical debt they alleviate in ML systems. We
have explored refactorings specific and tangential to ML and
occurring within and outside of ML-related code. A hierarchical
taxonomy of refactorings in ML systems was formulated,
14 and 7 new ML-specific refactorings and technical debt
categories, respectively, were introduced, and preliminary rec-
ommendations, best practices, and anti-patterns were proposed.
In the future, we will explore juxtaposing our findings with
developer specialties and expertise and integrating our results
into automated refactoring detection techniques [30].

ACKNOWLEDGMENTS

We would like to thank Erich Schubert and the anonymous
reviewers for feedback. Support for this project was provided
by Amazon Web Services (AWS) and PSC-CUNY Awards
#617930049 and #638010051, jointly funded by The Profes-
sional Staff Congress and The City University of New York.



REFERENCES

[1] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, M. Young, J.-F. Crespo, and D. Dennison, “Hidden
technical debt in Machine Learning systems,” in Neural Information
Processing Systems, vol. 2, MIT Press, 2015, pp. 2503–2511.

[2] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,”
Journal of Systems and Software, vol. 86, no. 6, pp. 1498–1516, 2013.
DOI: 10.1016/j.jss.2012.12.052.

[3] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner,
V. Chaudhary, and M. Young, “Machine learning: The high interest
credit card of technical debt,” in SE4ML: Software Engineering for
Machine Learning, NIPS 2014 Workshop, 2014.

[4] K. Pei, S. Wang, Y. Tian, J. Whitehouse, C. Vondrick, Y. Cao, B. Ray,
S. Jana, and J. Yang, “Bringing engineering rigor to Deep Learning,”
SIGOPS Oper. Syst. Rev., 2019.

[5] W. Zhou, Y. Zhao, G. Zhang, and X. Shen, “HARP: Holistic analysis
for refactoring Python-based analytics programs,” in International
Conference on Software Engineering, 2020.

[6] S. Lagouvardos, J. Dolby, N. Grech, A. Antoniadis, and Y. Smaragdakis,
“Static analysis of shape in TensorFlow programs,” in European
Conference on Object-Oriented Programming, 2020.

[7] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, and L. Zhang, “An empir-
ical study on TensorFlow program bugs,” in International Symposium
on Software Testing and Analysis, ACM, 2018, pp. 129–140. DOI:
10.1145/3213846.3213866.

[8] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N.
Nagappan, B. Nushi, and T. Zimmermann, “Software engineering for
Machine Learning: A case study,” in International Conference on
Software Engineering: Software Engineering in Practice, IEEE, 2019,
pp. 291–300. DOI: 10.1109/ICSE-SEIP.2019.00042.

[9] A. Arpteg, B. Brinne, L. Crnkovic-Friis, and J. Bosch, “Software
engineering challenges of Deep Learning,” in Euromicro Conference
on Software Engineering and Advanced Applications, 2018, pp. 50–59.
DOI: 10.1109/SEAA.2018.00018.

[10] M. J. Islam, G. Nguyen, R. Pan, and H. Rajan, “A comprehensive
study on Deep Learning bug characteristics,” in Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ACM, 2019, pp. 510–520. DOI:
10.1145/3338906.3338955.

[11] M. Kim, “Software engineering for data analytics,” IEEE Softw., vol. 37,
no. 4, pp. 36–42, 2020. DOI: 10.1109/MS.2020.2985775.

[12] L. E. Lwakatare, A. Raj, J. Bosch, H. H. Olsson, and I. Crnkovic, “A
taxonomy of software engineering challenges for Machine Learning
systems: An empirical investigation,” in Agile Processes in Software
Engineering and Extreme Programming, P. Kruchten, S. Fraser, and
F. Coallier, Eds., Springer International Publishing, 2019, pp. 227–243.
DOI: 10.1007/978-3-030-19034-7 14.

[13] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for
Software Design Smells: Managing Technical Debt, 1st ed. Morgan
Kaufmann, 2014.

[14] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A.
MacCormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan,
and N. Zazworka, “Managing technical debt in software-reliant systems,”
in FSE/SDP Workshop on Future of Software Engineering Research,
ACM, 2010, pp. 47–52. DOI: 10.1145/1882362.1882373.

[15] K. Beck, Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

[16] W. N. Behutiye, P. Rodrı́guez, M. Oivo, and A. Tosun, “Analyzing the
concept of technical debt in the context of agile software development:
A systematic literature review,” Information and Software Technology,
vol. 82, pp. 139–158, 2017. DOI: 10.1016/j.infsof.2016.10.004.

[17] Y. Tang, R. Khatchadourian, M. Bagherzadeh, R. Singh, A. Stewart,
and A. Raja, An empirical study of refactorings and technical debt in
Machine Learning systems, Aug. 2020. DOI: 10.5281/zenodo.3841195.

[18] T. Zhang, C. Gao, L. Ma, M. R. Lyu, and M. Kim, “An empirical study
of common challenges in developing Deep Learning applications,” in
International Symposium on Software Reliability Engineering, IEEE,
2019. DOI: 10.1109/issre.2019.00020.

[19] A. Ketkar, A. Mesbah, D. Mazinanian, D. Dig, and E. Aftandilian, “Type
migration in ultra-large-scale codebases,” in International Conference
on Software Engineering, IEEE, 2019, pp. 1142–1153. DOI: 10.1109/
ICSE.2019.00117.

[20] F. Falcini, G. Lami, and A. M. Costanza, “Deep Learning in automotive
software,” IEEE Softw., vol. 34, no. 3, pp. 56–63, 2017. DOI: 10.1109/
MS.2017.79.

[21] M. Song and T. Chambers, “Text mining with the Stanford CoreNLP,”
in Measuring Scholarly Impact: Methods and Practice, Y. Ding, R.
Rousseau, and D. Wolfram, Eds. Springer International Publishing,
2014, pp. 215–234. DOI: 10.1007/978-3-319-10377-8 10.

[22] R. Khatchadourian, Y. Tang, M. Bagherzadeh, and B. Ray, “An
empirical study on the use and misuse of Java 8 streams,” in
Fundamental Approaches to Software Engineering, ETAPS, Springer,
2020, pp. 97–118. DOI: 10.1007/978-3-030-45234-6 5.

[23] R. Khatchadourian, Y. Tang, and M. Bagherzadeh, “Safe automated
refactoring for intelligent parallelization of Java 8 streams,” Science of
Computer Programming, vol. 195, p. 102 476, 2020. DOI: 10.1016/j.
scico.2020.102476.

[24] R. Khatchadourian and H. Masuhara, “Proactive empirical assessment
of new language feature adoption via automated refactoring: The case
of Java 8 default methods,” The Art, Science, and Engineering of
Programming, vol. 2, no. 6, 6:1–6:30, 3 Mar. 27, 2018. DOI: 10.22152/
programming-journal.org/2018/2/6. arXiv: 1803.10198v1 [cs.PL].

[25] ——, “Automated refactoring of legacy Java software to default
methods,” in International Conference on Software Engineering, IEEE,
2017, pp. 82–93. DOI: 10.1109/icse.2017.16.

[26] S. M. Basha and D. S. Rajput, “Evaluating the impact of feature
selection on overall performance of sentiment analysis,” in International
Conference on Information Technology, ACM, 2017, pp. 96–102. DOI:
10.1145/3176653.3176665.

[27] G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Micenková,
E. Schubert, I. Assent, and M. E. Houle, “On the evaluation of
unsupervised outlier detection: Measures, datasets, and an empirical
study,” Data Mining and Knowledge Discovery, vol. 30, no. 4,
pp. 891–927, 2016. DOI: 10.1007/s10618-015-0444-8.

[28] V. R. Eluri, M. Ramesh, A. Salim Mohd Al-Jabri, and M. Jane, “A
comparative study of various clustering techniques on big data sets
using Apache Mahout,” in International Conference on Big Data and
Smart City, MEC, 2016, pp. 1–4. DOI: 10.1109/icbdsc.2016.7460397.

[29] U. Kamath and K. Choppella, Mastering Java Machine Learning. Packt
Publishing, 2017.

[30] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and
D. Dig, “Accurate and efficient refactoring detection in commit history,”
in International Conference on Software Engineering, 2018.

[31] A. J. Viera and J. M. Garrett, “Understanding interobserver agreement:
The kappa statistic.,” Family medicine, vol. 37, pp. 360–363, 5 2005.

[32] C. Casalnuovo, P. Devanbu, A. Oliveira, V. Filkov, and B. Ray, “Assert
use in GitHub projects,” in International Conference on Software
Engineering, IEEE, 2015, pp. 755–766.

[33] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, ACM, 2008, pp. 329–339. DOI:
10.1145/1346281.1346323.

[34] P. S. Kochhar and D. Lo, “Revisiting assert use in GitHub projects,”
in International Conference on Evaluation and Assessment in Software
Engineering, ACM, 2017, pp. 298–307. DOI: 10 . 1145 / 3084226 .
3084259.

[35] J. Bauer. (May 19, 2014). “Make the featurefactory an option, get the
parser’s objects from the . . .· stanfordnlp/corenlp@616d524,” Stanford
NLP, [Online]. Available: http://git.io/JfowK (visited on 05/28/2020).

[36] M. Kim, T. Zimmermann, and N. Nagappan, “An empirical study of
refactoring challenges and benefits at Microsoft,” IEEE Trans. Softw.
Eng., vol. 40, no. 7, pp. 633–649, 2014. DOI: 10.1109/TSE.2014.
2318734.

[37] Oracle. (2020). “Type inference for generic instance creation, Java SE
documentation,” [Online]. Available: https://docs.oracle.com/javase/
7/docs/technotes/guides/language/type- inference- generic- instance-
creation.html (visited on 08/18/2020).

[38] R. Khatchadourian, “Automated refactoring of legacy Java software to
enumerated types,” Automated Software Engineering, vol. 24, no. 4,
pp. 757–787, Dec. 1, 2017. DOI: 10.1007/s10515-016-0208-8.

[39] A. Gyori, L. Franklin, D. Dig, and J. Lahoda, “Crossing the gap from
imperative to functional programming through refactoring,” in Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ACM, 2013, pp. 543–553.
DOI: 10.1145/2491411.2491461.



[40] Y. Lin, S. Okur, and D. Dig, “Study and refactoring of Android
asynchronous programming,” in International Conference on Automated
Software Engineering, IEEE, 2015, pp. 224–235. DOI: 10.1109/ASE.
2015.50.

[41] M. Fowler, Refactoring: Improving the Design of Existing Code, English,
2nd ed. Addison-Wesley, Nov. 30, 2018.

[42] F. Tip, R. M. Fuhrer, A. Kieżun, M. D. Ernst, I. Balaban, and B.
De Sutter, “Refactoring using type constraints,” ACM Transactions on
Programming Languages and Systems, vol. 33, no. 3, 9:1–9:47, 2011.
DOI: 10.1145/1961204.1961205.

[43] J. Kerievsky, Refactoring to Patterns. Pearson Higher Education, 2004.
[44] F. Steimann, “The Infer Type refactoring and its use for interface-based

programming,” J. Object Technol., vol. 6, pp. 99–120, 2 Feb. 2007.
DOI: 10.5381/jot.2007.6.2.a5.

[45] L. White. (Jul. 15, 2018). “Make column type an interface · issue #310
· jtablesaw/tablesaw,” Tablesaw, [Online]. Available: http://git.io/JJNur
(visited on 08/18/2020).

[46] S. Audet and A. Black. (Jul. 22, 2019). “Refactor NativeOps.h to
export C functions · eclipse/deeplearning4j@dcc72e2,” Eclipse, [Online].
Available: http://git.io/JJNuF (visited on 05/12/2020).

[47] S. Gazeos. (Dec. 3, 2019). “Refactored pad and mirror pad ops to
conform with TF. (#100) · eclipse/deeplearning4j@1905751,” Eclipse,
[Online]. Available: http://git.io/JJNuO (visited on 08/21/2020).

[48] K. L. Busbee, Programming Fundamentals: A Modular Structured
Approach Using C++, English, 1st ed. OpenStax CNX, Jan. 10, 2013.
[Online]. Available: https://openlibrary-repo.ecampusontario.ca/jspui/
handle/123456789/693 (visited on 08/20/2020).

[49] M. Dilhara, A. Ketkar, and D. Dig, “Understanding Software-2.0:
A study of Machine Learning library usage and evolution,” Oregon
State University, Nov. 16, 2020. [Online]. Available: https://ir.library.
oregonstate.edu/concern/defaults/3b591h056 (visited on 02/12/2021).

[50] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable machine
learning for scientific insights and discoveries,” IEEE Access, vol. 8,
pp. 42 200–42 216, 2020. DOI: 10.1109/ACCESS.2020.2976199.

[51] A. Zheng, “The challenges of building machine learning tools for the
masses,” in SE4ML: Software Engineering for Machine Learning, NIPS
2014 Workshop, Dec. 13, 2014.

[52] E. Schubert and A. Zimek. (Feb. 16, 2019). “ELKI: Environment for
developing KDD-applications supported by index-structures, Open-
source data mining with Java,” ELKI Data Mining Toolkit, [Online].
Available: http://git.io/JUvul (visited on 08/22/2020).

[53] K. Sørensen. (Mar. 24, 2019). “Refactored components to have a
“training analyzer” per algorithm. · datacleaner/datacleaner@59f39c7,”
DataCleaner, [Online]. Available: http : / / git . io / JJAgT (visited on
08/19/2020).

[54] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski,
J. Long, E. J. Shekita, and B.-Y. Su, “Scaling distributed Machine
Learning with the parameter server,” in Operating Systems Design and
Implementation, USENIX, 2014, pp. 583–598.

[55] E. Schubert. (Mar. 31, 2009). “Huge Pair refactoring. · elki-
project/elki@6dd5431,” ELKI, [Online]. Available: https : / / git . io /
JUUHG (visited on 08/25/2020).

[56] ——, (Jan. 9, 2009). “Code refactoring, to allow code reuse in other
SNN functions · elki-project/elki@eb13202,” ELKI Data Mining Toolkit,
[Online]. Available: http://git.io/JUvue (visited on 08/22/2020).

[57] J. Eastman. (Oct. 11, 2011). “[MAHOUT-846] improve scalability
of Gaussian cluster for wide vectors - ASF JIRA,” Apache, [Online].
Available: http://issues.apache.org/jira/browse/MAHOUT-846 (visited
on 08/22/2020).

[58] ——, (Dec. 22, 2011). “MAHOUT-846: Minor refactoring to eliminate
unnecessary. . .· apache/mahout@4432e31,” Apache, [Online]. Available:
http://git.io/JUv2G (visited on 08/22/2020).

[59] C. V. Lopes, P. Maj, P. Martins, V. Saini, D. Yang, J. Zitny, H. Sajnani,
and J. Vitek, “Déjàvu: A map of code duplicates on GitHub,” in
International Conference on Object-Oriented Programming, Systems,
Languages, and Applications, ACM, 2017. DOI: 10.1145/3133908.

[60] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and
O. Strollo, “When does a refactoring induce bugs? an empirical study,”
in International Working Conference on Source Code Analysis and
Manipulation, IEEE, 2012, pp. 104–113. DOI: 10.1109/SCAM.2012.20.

[61] Global App Testing. (Apr. 16, 2019). “Most popular programming
languages on Stack Overflow bar chart race,” [Online]. Available: http:
//youtu.be/cKzP61Gjf00 (visited on 04/23/2020).

[62] Python Software Foundation. (Aug. 26, 2020). “abc, Abstract Base
Classes,” Python 3.8.5 documentation, [Online]. Available: http://docs.
python.org/3/library/abc.html (visited on 08/26/2020).

[63] T. Winters, “Non-atomic refactoring and software sustainability,” in
International Workshop on API Usage and Evolution, IEEE, 2018,
pp. 2–5. DOI: 10.1145/3194793.3194794.

[64] H. Wright, “Lessons learned from large-scale refactoring,” in Inter-
national Conference on Software Maintenance and Evolution, IEEE,
2019, pp. 366–366. DOI: 10.1109/ICSME.2019.00058.

[65] H. Wright, “Incremental type migration using type algebra,” in
International Conference on Software Maintenance and Evolution,
IEEE, 2020, pp. 756–765. DOI: 10.1109/ICSME46990.2020.00085.

[66] D. Silva, N. Tsantalis, and M. T. Valente, “Why we refactor? confessions
of GitHub contributors,” in Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ACM, 2016, pp. 858–870. DOI: 10 . 1145 / 2950290 .
2950305.

[67] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understanding
the use of lambda expressions in Java,” in International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
vol. 1, ACM, 2017. DOI: 10.1145/3133909.

[68] L. Aversano, U. Carpenito, and M. Iammarino, “An empirical study
on the evolution of design smells,” Information, vol. 11, no. 7, p. 348,
2020. DOI: 10.3390/info11070348.

[69] C. Vassallo, G. Grano, F. Palomba, H. C. Gall, and A. Bacchelli,
“A large-scale empirical exploration on refactoring activities in open
source software projects,” Science of Computer Programming, vol. 180,
pp. 1–15, 2019. DOI: 10.1016/j.scico.2019.05.002.

[70] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor, and
how we know it,” in International Conference on Software Engineering,
IEEE, 2009, pp. 287–297. DOI: 10.1109/ICSE.2009.5070529.

[71] L. Sousa, D. Cedrim, W. Oizumi, A. Bibiano, A. Oliveira, A. Garcia,
D. Oliveira, and M. Kim, “Characterizing and identifying compos-
ite refactorings: Concepts, heuristics and patterns,” in International
Conference on Mining Software Repositories, 2020.

[72] A. Hora and R. Robbes, “Characteristics of method extractions in Java:
A large scale empirical study,” Empirical Software Engineering, 2020.
DOI: 10.1007/s10664-020-09809-8.

[73] A. Peruma, C. D. Newman, M. W. Mkaouer, A. Ouni, and F. Palomba,
“An exploratory study on the refactoring of unit test files in Android
applications,” in International Workshop on Refactoring, 2020. [Online].
Available: http://git.io/JJAgD (visited on 08/19/2020).

[74] I. Ferreira, E. Fernandes, D. Cedrim, A. Uchôa, A. C. Bibiano, A.
Garcia, J. L. Correia, F. Santos, G. Nunes, C. Barbosa, and et al.,
“The buggy side of code refactoring: Understanding the relationship
between refactorings and bugs,” in International Conference on Software
Engineering: Companion Proceeedings, ACM, 2018, pp. 406–407. DOI:
10.1145/3183440.3195030.

[75] A. Potdar and E. Shihab, “An exploratory study on self-admitted
technical debt,” in International Conference on Software Maintenance
and Evolution, IEEE, 2014, pp. 91–100. DOI: 10.1109/icsme.2014.31.

[76] G. Bavota and B. Russo, “A large-scale empirical study on self-admitted
technical debt,” in International Conference on Mining Software
Repositories, ACM, 2016, pp. 315–326. DOI: 10 . 1145 / 2901739 .
2901742.

[77] Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li, “Identifying self-admitted
technical debt in open source projects using text mining,” Empirical
Softw. Engg., vol. 23, no. 1, pp. 418–451, 2018. DOI: 10.1007/s10664-
017-9522-4.

[78] L. Rantala, M. Mäntylä, and D. Lo, “Prevalence, contents and auto-
matic detection of KL-SATD,” in Euromicro Conference on Software
Engineering and Advanced Applications, 2020. arXiv: 2008.05159v1.

[79] B. Christians, “Self-admitted technical debt–an investigation from farm
to table to refactoring,” Rochester Institute of Technology, Sep. 2020.

[80] D. E. Perry, A. A. Porter, and L. G. Votta, “Empirical studies of software
engineering: A roadmap,” in International Conference on Software
Engineering, ACM, 2000, pp. 345–355. DOI: 10.1145/336512.336586.

[81] M. Bagherzadeh and R. Khatchadourian, “Going big: A large-scale
study on what big data developers ask,” in Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ACM, 2019, pp. 432–442. DOI: 10.1145/
3338906.3338939.


