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Abstract

Streaming APIs are becoming more pervasive in mainstream Object-Oriented

programming languages and platforms. For example, the Stream API intro-

duced in Java 8 allows for functional-like, MapReduce-style operations in pro-

cessing both finite, e.g., collections, and infinite data structures. However, using

this API efficiently involves subtle considerations such as determining when it

is best for stream operations to run in parallel, when running operations in

parallel can be less efficient, and when it is safe to run in parallel due to pos-

sible lambda expression side-effects. In this paper, we present an automated

refactoring approach that assists developers in writing efficient stream code in

a semantics-preserving fashion. The approach, based on a novel data order-

ing and typestate analysis, consists of preconditions and transformations for

automatically determining when it is safe and possibly advantageous to con-

vert sequential streams to parallel and unorder or de-parallelize already parallel

streams. The approach was implemented as a plug-in to the popular Eclipse

IDE, uses the WALA and SAFE analysis frameworks, and was evaluated on 18
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Java projects consisting of ∼1.65M lines of code. We found that 116 of 419

candidate streams (27.68%) were refactorable, and an average speedup of 3.49

on performance tests was observed. The results indicate that the approach is

useful in optimizing stream code to their full potential.

Keywords: refactoring, static analysis, automatic parallelization, performance

improvement, interprocedural static analysis, typestate analysis, operation and

data order analysis, side-effect analysis, Java 8, streams

1. Introduction

Streaming APIs are widely-available in today’s mainstream, Object-Oriented

programming languages and platforms [1], including Scala [2], JavaScript [3],

C# [4], Java [5], and Android [6]. These APIs incorporate MapReduce-like [7]

operations on native data structures such as collections. Below is a “sum of even5

squares” example in Java [1], which accepts a λ-expression (unit of computation)

and results in the list element’s square. The λ-expression argument to filter()

evaluates to true iff the element is even:

list.stream().filter(x -> x % 2 == 0).map(x -> x * x).sum();

MapReduce, which helps reduce the complexity of writing parallel pro-

grams by facilitating big data processing [8] on multiple nodes using succinct10

functional-like programming constructs, is a popular programming paradigm

for writing a specific class of parallel programs. It makes writing parallel code

easier, as writing such code can be difficult due to possible data races, thread

interference, and contention [9–13]. For instance, the code above can execute in

parallel simply by replacing stream() with parallelStream().15

MapReduce, though, traditionally operates in a highly-distributed environ-

ment with no concept of shared memory, while Java 8 Stream processing oper-

ates in a single node under multiple threads or cores in a shared memory space.

In the latter case, because the data structures for which the MapReduce-like

operations execute are on the local machine, problems may arise from the close20
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intimacy between shared memory and the operations being performed. Devel-

opers, thus, must manually determine whether running stream code in parallel

results in an efficient yet interference-free program [14] and ensure that no op-

erations on different threads interleave [15].

Despite the benefits [16, Ch. 1], using streams efficiently requires many sub-25

tle considerations. For example, it is often not straight-forward if running an

operation in parallel is more optimal than running it sequentially due to po-

tential side-effects of λ-expressions, buffering, etc. Other times, using stateful

λ-expressions, i.e., those whose results depend on any state that may change

during execution, can undermine performance due to possible thread contention.30

In general, these kinds of errors can lead to programs that undermine con-

currency, underperform, and are inefficient. Moreover, these problems may not

be immediately evident to developers and may require complex interprocedu-

ral analysis, a thorough understanding of the intricacies of a particular stream

implementation, and knowledge of situational API replacements. Manual anal-35

ysis and/or refactoring (semantics-preserving, source-to-source transformation)

to achieve optimal results can be overwhelming and error- and omission-prone.

This problem is exacerbated by the fact that 419 total candidate streams1 across

18 projects2 were found during our experiments (section 4), a number that can

increase over time as streams rise in popularity. In fact, Mazinanian et al. [17]40

found an increasing trend in the adoption of λ-expressions, an essential part of

using the Java 8 stream API, with the number of λ-expressions being introduced

increasing by two-fold between 2015 and 2016. And, a recent GitHub search by

the authors yielded 350K classes importing the java.util.stream package.

The operations issued per stream may be many; we found an average of45

4.14 operations per stream. Permutating through operation combinations and

1Stream candidacy is determined by several analysis parameters that involve performance

trade-offs as described in sections 4.2 and 4.3.
2A stream instance approximation is defined as an invocation to a stream API returning

a stream object, e.g., stream(), parallelStream().
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subsequently assessing performance, if such dedicated tests even exist, can be

burdensome. (Manual) interprocedural and type hierarchy analysis may be

needed to discover ways to use streams in a particular context optimally.

Previously, attention has been given to retrofitting concurrency on to ex-50

isting sequential (imperative) programs [18–20], translating imperative code to

MapReduce [21], verifying and validating correctness of MapReduce-style pro-

grams [22–25], studying the use of λ-expressions [17,26–28] and streams [29], and

improving performance of the underlying MapReduce framework implementa-

tion [30–33]. Little attention, though, has been paid to mainstream languages55

utilizing functional-style APIs that facilitate MapReduce-style operations over

native data structures like collections. Furthermore, improving imperative-style

MapReduce code that has either been handwritten or produced by one the

approaches above has, to the best of our knowledge, not been thoroughly con-

sidered. Tang et al. [14] only briefly present preliminary progress towards this60

end, while Khatchadourian et al. [34] discuss engineering aspects.

The problem may also be handled by compilers or run times, however, refac-

toring has several benefits, including giving developers more control over where

the optimizations take place and making parallel processing explicit. Refactor-

ings can also be issued multiple times, e.g., prior to major releases, and, unlike65

static checkers, refactorings transform source code, a task that can be otherwise

error-prone and involve nuances.

We propose a fully-automated, semantics-preserving refactoring approach

that transforms Java 8 stream code for improved performance.3 The approach

is based on a novel data ordering and typestate analysis. The ordering analysis70

involves inferring when maintaining the order of a data sequence in a partic-

ular expression is necessary for semantics preservation. Typestate analysis is

a program analysis that augments the type system with “state” and has been

3Our approach is categorized as a refactoring due to the transformations being semantics-

preserving as opposed to a more general program transformation that may not preserve se-

mantics.
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traditionally used for preventing resource errors [35,36]. Here, it is used to iden-

tify stream usages that can benefit from “intelligent” parallelization, resulting75

in more efficient, semantically-equivalent code.

Typestate was chosen to track state changes of streams that may be aliased

and to determine the final state following a terminal (reduction) operation. Non-

terminal (intermediate) operations may return the receiver stream, in which case

traditional typestate applies. However, we augmented typestate to apply when80

a new stream is returned in such situations (cf. sections 3.3 and 3.5). Our ap-

proach interprocedurally analyzes relationships between types. It also discovers

possible side-effects in λ-expressions to safely transform streams to either exe-

cute sequentially or in parallel, depending on which refactoring preconditions,

which we define, pass. Furthermore, to the best of our knowledge, it is the first85

automated refactoring technique to integrate typestate.

The refactoring approach was implemented as an open-source Eclipse [37]

plug-in that integrates analyses from WALA [38] and SAFE [39]. The evalua-

tion involved studying the effects of our plug-in on 18 Java projects of varying

size and domain with a total of ∼1.65M lines of code. Our study indicates that90

(i) given its interprocedural nature, the (fully automated) analysis cost is reason-

able, with an average running time of 70.26 minutes per candidate stream and

34.04 seconds per thousand lines of code, (ii) despite their ease-of-use, parallel

streams are not commonly (manually) used in modern Java software, motivating

an automated approach, and (iii) the proposed approach is useful in refactoring95

stream code for greater efficiency despite its conservative nature. This work

makes the following contributions:

Precondition formulation and algorithm design. We present a novel refac-

toring approach for maximizing the efficiency of Java 8 stream code by

automatically determining when it is safe and possibly advantageous to100

execute streams in parallel, when running streams in parallel can be coun-

terproductive, and when ordering is unnecessarily depriving streams of

optimal performance. Our minimally invasive transformation algorithm
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approach refactors streams for greater parallelism while maintaining orig-

inal semantics.105

Generalized typestate analysis. Streams necessitate several generalizations

of typestate analysis, including determining object state at arbitrary points

and support for immutable object call chains. Reflection is also combined

with (hybrid) typestate analysis to identify initial states.

Implementation and experimental evaluation. To ensure real-world ap-110

plicability, the approach was implemented as an Eclipse plug-in built

on WALA and SAFE and was used to study 18 Java programs that

use streams. Our technique successfully refactored 27.68% of candidate

streams, and we observed an average speedup of 3.49 during performance

testing. The experimentation also gives insights into how streams are used115

in real-world applications, which can motivate future language and/or API

design. These results advance the state of the art in automated tool sup-

port for stream code to perform to their full potential.

A shorter version of this work originally appeared in Khatchadourian et al.

[40]. In this article, we add critical details of the approach, including adding120

a transformation algorithm, handling of advanced stream operations such as

concatenation, more thorough treatments of the analyses involved, and an aug-

mented motivating example. We also expand the experimentation by adding

63.64% more subjects, which help increase the generality of the experiments

performed.125

2. Motivation, Background, and Insight

We present a running example that highlights some of the challenges associ-

ated with analyzing and refactoring streams for greater parallelism and increased

efficiency. Listing 1 depicts a simplified, hypothetical widget class [5]. Widgets

have a Color (lines 2–3) and a real weight (line 4). A constructor is provided130
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Listing 1 A hypothetical widget class.

1 class Widget {

2 enum Color {RED, BLUE, GREEN, /*...*/ };

3 private Color color;

4 private double weight;

5 public Widget(Color color, double weight) {this.color = color; this.weight = weight;}

6 public Color getColor() {return this.color;}

7 public double getWeight() {return this.weight;}

8 /* override equals() and hashCode() ... */ }

Listing 2 Sorting Widgets by weight.

(a) Stream code snippet before refactoring.

1 Collection<Widget> unorderedWidgets =

2 new HashSet<>();

3

4 List<Widget> sortedWidgets =

5 unorderedWidgets

6 .stream()

7 .sorted(Comparator

8 .comparing(Widget::getWeight))

9 .collect(Collectors.toList());

(b) Improved stream code via refactoring.

1 Collection<Widget> unorderedWidgets =

2 new HashSet<>();

3

4 List<Widget> sortedWidgets =

5 unorderedWidgets

6 .stream()parallelStream()

7 .sorted(Comparator

8 .comparing(Widget::getWeight))

9 .collect(Collectors.toList());

(line 5), as well as accessor methods (lines 6–7). Object methods equals() and

hashCode() are appropriately overridden (not shown).

Listing 2 portrays code that uses the Java 8 Stream API to process collections

of Widgets with weights. Listing 2a is the original version, while listing 2b is

the improved (but semantically-equivalent) version after our refactoring. In list-135

ing 2a, a Collection of Widgets is declared (line 1) that does not maintain

element ordering as HashSet does not support it [41]. Note that ordering is

dependent on the run time type.

A stream (a view representing element sequences supporting MapReduce-

style operations) of unorderedWidgets is created on line 6. It is sequential,140

meaning its operations will execute serially. Streams may also have an encounter

order, which can be dependent on the stream’s source. In this case, it will be

unordered since HashSets are unordered.
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Listing 3 Unoptimizable code collecting weights over 43.2 into a Set in parallel.

10 Collection<Widget> orderedWidgets = new ArrayList<>();

11

12 Set<Double> heavyWidgetWeightSet =

13 orderedWidgets

14 .parallelStream()

15 .map(Widget::getWeight)

16 .filter(w -> w > 43.2)

17 .collect(Collectors.toSet());

On lines 7–8, the stream is sorted by the corresponding intermediate oper-

ation, the result of which is a (possibly) new stream with the encounter order145

rearranged accordingly. Widget::getWeight is a method reference denoting

the method that should be used for the comparison. Intermediate operations

are deferred until a terminal operation is executed like collect() (line 9). The

collect() operation is a special kind of (mutable) reduction that aggregates

results of prior intermediate operations into a given Collector. In this case, it150

is one that yields a List. The result is a Widget List sorted by weight.4

It may be possible to increase performance by running this stream’s “pipeline”

(i.e., its sequence of operations) in parallel.5 Listing 2b, line 6 displays the cor-

responding refactoring with the stream pipeline execution in parallel (removed

code is struck through, while the added code is underlined). Note, however,155

that had the stream been ordered, running the pipeline in parallel may result

in worse performance due to the multiple passes and/or data buffering required

by stateful intermediate operations like sorted(). Because the stream is un-

ordered, the reduction can be done more efficiently as the framework can employ

a divide-and-conquer strategy [5].160

In contrast, line 10 of listing 3 instantiates an ArrayList, which maintains

element ordering. Furthermore, a parallel stream is derived from this collec-

4The collect() operation is only one kind of terminal operation; a full list is portrayed in

table 3, column t. operation.
5A pipeline can only be executed via invoking a terminal operation.
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Listing 4 Unoptimizable code sequentially collecting into a List, skipping

first 1000.

18 List<Widget> skippedWidgetList =

19 orderedWidgets

20 .stream()

21 .skip(1000)

22 .collect(Collectors.toList());

Listing 5 Collecting the first green Widgets into a List.

(a) Stream code snippet before refactoring.

23 List<Widget> firstGreenList =

24 orderedWidgets

25 .stream()

26 .filter(w->w.getColor()==Color.GREEN)

27 .unordered()

28 .limit(5)

29 .collect(Collectors.toList());

(b) Improved stream code via refactoring.

24 List<Widget> firstGreenList =

25 orderedWidgets

26 .stream()parallelStream()

27 .filter(w->w.getColor()==Color.GREEN)

28 .unordered()

29 .limit(5)

30 .collect(Collectors.toList());

tion (line 14), with each Widget mapped to its weight, each weighted filtered

(line 16), and the results collected into a Set. Unlike the previous example,

however, no optimizations are available here as a stateful intermediate operation165

is not included in the pipeline and, as such, the parallel computation does not

incur the aforementioned possible performance degradation.6

Listing 4 creates a list of Widgets gathered by (sequentially) skipping the

first thousand from orderedWidgets. Like sorted(), skip() is also a stateful

intermediate operation. Unlike the previous example, though, executing this170

pipeline in parallel could be counterproductive because, as it is derived from

an ordered collection, the stream is ordered. It may be possible to unorder

the stream (via unordered()) so that its pipeline would be more amenable to

parallelization. In this situation, however, unordering could alter semantics as

the data is assembled into a structure maintaining ordering. As such, the stream175

remains sequential as element ordering must be preserved.

6Although no transformations are suggested in this example, a thorough analysis may still

be necessary in some cases to determine when optimizations are not available.
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Listing 6 Collecting distinct Widget weights into a TreeSet.

(a) Stream code snippet before refactoring.

31 Set<Double> distinctWeightSet =

32 orderedWidgets

33 .stream()

34 .parallel()

35 .map(Widget::getWeight)

36 .distinct()

37 .collect(Collectors

38 .toCollection(TreeSet::new));

(b) Improved stream code via refactoring.

31 Set<Double> distinctWeightSet =

32 orderedWidgets

33 .stream()

34 .parallel()

35 .map(Widget::getWeight)

36 .distinct()

37 .collect(Collectors

38 .toCollection(TreeSet::new));

In listing 5, the first five green Widgets of orderedWidgets are sequentially

collected into a List. As limit() is a stateful intermediate operation, per-

forming this computation in parallel could have adverse effects as the stream is

ordered (with the source being orderedWidgets). Yet, on line 27, the stream180

is unordered7 before the limit() operation. Because the stateful intermedi-

ate operation is applied to an unordered stream, to improve performance, the

pipeline is refactored to parallel on line 26 in listing 5b. Although similar to

the refactoring on line 6, it demonstrates that stream ordering does not solely

depend on its source.185

A distinct widget weight Set is created in listing 6. Unlike the previous

example, this collection already takes place in parallel. Note though that there

is a possible performance degradation here as the stateful intermediate operation

distinct() may require multiple passes, the computation takes place in parallel,

and the stream is ordered. Keeping the parallel computation but unordering the190

stream may improve performance but we would need to determine whether doing

so is safe, which can be error-prone if done manually, especially on large and

complex projects.

Our insight is that, by analyzing the type of the resulting reduction, we

may be able to determine if unordering a stream is safe. In this case, it is a195

(mutable) reduction (i.e., collect() on lines 37–38) to a Set, of which sub-

7The use of unordered() is deliberate despite nondeterminism.
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Listing 7 Collecting distinct Widget colors into a HashSet.

(a) Stream code snippet before refactoring.

39 Set<Color> distinctColorSet =

40 orderedWidgets

41 .parallelStream()

42 .map(Widget::getColor)

43 .distinct()

44 .collect(HashSet::new, Set::add,

45 Set::addAll);

(b) Improved stream code via refactoring.

39 Set<Color> distinctColorSet =

40 orderedWidgets

41 .parallelStream()

42 .map(Widget::getColor)

43 .unordered().distinct()

44 .collect(HashSet::new, Set::add,

45 Set::addAll);

classes that do not preserve ordering exist. If we could determine that the

resulting Set is unordered, unordering the stream would be safe since the col-

lection operation would not preserve ordering. The type of the resulting Set re-

turned here is determined by the passed Collector, in this case, Collectors. c200

toCollection(TreeSet::new), the argument to which is a reference to the

default constructor. Unfortunately, since TreeSets preserve ordering, we must

keep the stream ordered. Here, to improve performance, it may be advantageous

to run this pipeline, perhaps surprisingly, sequentially (line 34, listing 6b).

Listing 7 maps, in parallel, each Widget to its Color, filter those that are205

distinct, and collecting them into a Set. To demonstrate the variety of ways

mutable reductions can occur, a more direct form of collect() is used rather

than a Collector, and the collection is to a HashSet, which does not maintain

element ordering. As such, though the stream is originally ordered, since the

(mutable) reduction is to an unordered destination, we can infer that the stream210

can be safely unordered to improve performance. Thus, line 43 in listing 7b

shows the inserted call to unordered() immediately before distinct(). This

allows distinct() to work more efficiently under parallel computation [5].

Streams can also be stored in variables. Lines 50–53 of listing 8 sum the

weight of all distinct Widgets. Two streams are created from each of the Widget215

collections (lines 46–47), with the former being unordered and the latter ordered

(due to their sources) and parallel. The streams are composed via a concate-

nation operation on line 48, which produces an ordered stream iff both of the

constituent streams are ordered and a parallel stream if either of the streams
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Listing 8 Unoptimizable code obtaining the total weight of all distinct

Widgets.

46 Stream<Widget> unorderedStream = unorderedWidgets.stream();

47 Stream<Widget> orderedStream = orderedWidgets.parallelStream();

48 Stream<Widget> concatStream = Stream.concat(unorderedStream, orderedStream);

49 double distinctWeightSum =

50 concatStream

51 .distinct()

52 .mapToDouble(w -> w.getWeight())

53 .sum();

Listing 9 Collecting Widget colors matching a regex.

54 Pattern pattern = Pattern.compile(".*e[a-z]");

55 ArrayList<String> results = new ArrayList<>();

56 orderedWidgets.stream()

57 .map(w -> w.getColor())

58 .map(c -> c.toString())

59 .filter(s -> pattern.matcher(s).matches())

60 .forEach(s -> results.add(s));

are parallel [42]. Here, the resulting stream is unordered and parallel, and the220

computation (lines 50–53) needs no further optimization.

Lastly, in listing 9, Widget colors matching a particular regular expression

are sequentially accumulated into an ArrayList. The code proceeds by mapping

each widget to its Color (line 57), each Color to its String representation

(line 58), filtering matching strings (lines 59–59), and forEach, adding them to225

the resulting ArrayList via the λ-expression s -> results.add(s) (line 60).

The stream is not refactored to parallel because of the λ-expression’s possible

side-effects. Otherwise, the unsynchronized ArrayList could cause incorrect

results due to thread scheduling, possibly altering semantics. Adding synchro-

nization would solve that problem but cause thread contention, undermining230

the benefit of parallelism [5].

Manual analysis of stream code can be complicated, even as seen in this

simplified example. It necessitates a thorough understanding of the intricacies

of the underlying computational model, a problem which can be compounded in
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Table 1: Convert Sequential Stream to Parallel preconditions. Column execution is

the stream pipeline execution mode. Column ordering is the ordering attribute of the stream

in question, i.e., whether the stream is associated with an encounter order. Column se is true

iff any behavioral parameters (λ-expressions) associated with any operations in the stream’s

pipeline have side-effects. Column SIO stands for Stateful Intermediate Operations and is

true iff any intermediate operation contained within the stream’s pipeline is stateful. Column

ROM stands for Reduce Ordering Matters and is true iff ordering of the result produced

by the (terminal) reduction operation must be preserved. Column transformation is the

refactoring action to employ when the corresponding precondition passes. Cells whose value

is N/A may be either true or false.

execution ordering se SIO ROM transformation

P1 sequential unordered F N/A N/A Convert to parallel.

P2 sequential ordered F F N/A Convert to parallel.

P3 sequential ordered F T F Unorder, convert to parallel.

more extensive programs. As streaming APIs become more pervasive, it would235

be extremely valuable to developers, particularly those not previously familiar

with functional programming, if automation can assist them in writing efficient

stream code.

3. Optimization Approach

3.1. Intelligent Parallelization Refactorings240

We propose two new refactorings, i.e., Convert Sequential Stream to

Parallel and Optimize Parallel Stream. The first deals with determining

if it is possibly advantageous (performance-wise, based on type analysis) and

safe (e.g., no race conditions, semantics alterations) to transform a sequential

stream to parallel. The second deals with a stream that is already parallel245

and ascertains the steps (transformations) necessary to possibly improve its

performance, including unordering and converting the stream to sequential.
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3.1.1. Converting Sequential Streams to Parallel

Table 1 portrays the preconditions for our proposed Convert Sequential

Stream to Parallel refactoring. It lists the conditions that must hold for250

the transformation to be both semantics-preserving as well as possibly advanta-

geous, i.e., resulting in a possible performance gain. Column execution denotes

the stream’s execution mode, i.e., whether, upon the execution of a terminal op-

eration, its associated pipeline will execute sequentially or in parallel. Column

ordering denotes whether the stream is associated with an encounter order,255

i.e., whether elements of the stream must be visited in a particular order (“ord”

is ordered and “unord” is unordered). Column se represents whether any behav-

ioral parameters (λ-expressions) that will execute during the stream’s pipeline

have possible side-effects. Column SIO constitutes whether the pipeline has any

stateful intermediate operations. Column ROM (Reduction Order Matters)260

represents whether the encounter order must be preserved by the result of the

terminal operation. A T denotes that the reduction result depends on the en-

counter order of a previous (intermediate) operation. Conversely, an F signifies

that any ordering of the input operation to the reduction need not be preserved.

Column transformation characterizes the transformation actions to take when265

the corresponding precondition passes (note the conditions are mutually exclu-

sive). N/A is either T or F.

A stream passing P1 is one that is sequential, unordered, and has no side-

effects. Because this stream is already unordered, whether or not its pipeline

contains a stateful intermediate operation is inconsequential. Since the stream270

is unordered, any stateful intermediate operations can run efficiently in parallel.

Moreover, preserving the ordering of the reduction is also inconsequential as no

original ordering exists. Here, it is both safe and possibly advantageous to run

the stream pipeline in parallel. The stream derived from unorderedWidgets

on line 6, listing 2 is an example of a stream passing P1. A stream passing275

P2 is also sequential and free of λ-expressions containing side-effects. However,

such streams are ordered, meaning that the refactoring only takes place if no
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Table 2: Optimize Parallel Stream preconditions. Column execution is the stream

pipeline execution mode. Column ordering is the ordering attribute of the stream in ques-

tion, i.e., whether the stream is associated with an encounter order. Column SIO stands for

Stateful Intermediate Operations and is true iff any intermediate operation contained within

the stream’s pipeline is stateful. Column ROM stands for Reduce Ordering Matters and is

true iff ordering of the result produced by the (terminal) reduction operation must be pre-

served. Column transformation is the refactoring action to employ when the corresponding

precondition passes.

execution ordering SIO ROM transformation

P4 parallel ordered T F Unorder.

P5 parallel ordered T T Convert to sequential.

stateful intermediate operations exist. P3, on the other hand, will allow such a

refactoring to occur, i.e., if a stateful intermediate operation exists, only if the

ordering of the reduction’s result is inconsequential, i.e., the reduction ordering280

need not be maintained. As such, the stream can be unordered immediately

before the (first) stateful intermediate operation (as performed on line 43, list-

ing 7b). The stream created on line 20, listing 4 is an example of a stream

failing this precondition.

3.1.2. Optimizing Parallel Streams285

Table 2 depicts the preconditions for the Optimize Parallel Stream

refactoring. Here, the stream in question is already parallel. A stream passing

either precondition is one that is ordered and whose pipeline contains a stateful

intermediate operation. Streams passing P4 are ones where the reduction does

not need to preserve the stream’s encounter order, i.e., reduce ordering matters290

(ROM) is F. An example is depicted on line 41, listing 7. Under these circum-

stances, the stream can be explicitly unordered immediately before the (first)

stateful intermediate operation, as done on line 43 of listing 7b. Streams passing

P5, on the other hand, are ones that the reduction ordering does matter, e.g.,

15



Figure 1: High-level flowchart.

Figure 2: Precondition checking flowchart.

the stream created on line 33. To possibly improve performance, such streams295

are transformed to sequential (line 34, listing 6b).8

3.2. Overview

Figure 1 depicts the high-level flowchart for our approach. The process

begins with input source code. Preconditions are checked on the constituent

stream declarations (sections 3.3 to 3.7). Those passing preconditions are then300

transformed to either parallel or sequential or unordered (section 3.8).

The precondition checking process from fig. 1 is further expanded in fig. 2.

First, stream creation expressions are identified (section 3.3), producing the

8Unlike table 1, side-effects are not considered here as our approach is a performance-based

refactoring. De-parallelizing streams with possible side-effects would be considered a possibly

semantics violating correctness-based transformation and is out of scope w.r.t. this work.
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streams that are candidates for transformation. Next, stream attributes are an-

alyzed (section 3.4), initially by extracting and subsequently examining their305

Spliterator [43]. This is performed to determine initial stream execution

mode (section 3.4.1) and ordering (section 3.4.2). Once starting stream states

have been determined, state changes are tracked through stream pipelines (sec-

tion 3.5), producing intermediate streams (section 3.5.1). The states of such

streams are then merged (section 3.5.2) and associated with an origin stream310

(section 3.5.3). The pipelines are then determined to have side-effects (sec-

tion 3.6), as well as whether the terminating expression actually makes use of

the stream’s ordering, if applicable (section 3.7).

3.3. Identifying Stream Creation

Identifying where in the code streams are created is imperative for several315

reasons. First, streams are typically derived from a source (e.g., a collection)

and take on its characteristics (e.g., ordering). This is used in tracking stream

attributes across their pipeline (section 3.4). Second, for streams passing pre-

conditions, the creation site serves a significant role in the transformation (sec-

tion 3.8). In other words, it helps locate where the transformation should take320

place.

There are several ways to create streams, including being derived from

Collections, being created from arrays (e.g., Arrays.stream()), and via static

factory methods (e.g., IntStream.range()). Streams may also be directly cre-

ated via constructors. However, it is not typical of streaming API client appli-325

cations, as they generally use creation APIs such as Stream.of(), which are

our focus, as opposed to streaming API frameworks and their implementations.

We consider stream creation point approximations as any expression evaluating

to a type implementing the java.util.stream.BaseStream interface, which is

the top-level stream interface. We exclude, however, streams emanating from330

intermediate operations, i.e., instance methods whose receiver and return types

implement the stream interface, as such methods are not likely to produce new

streams but rather ones derived from the receiver but with different attributes.
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⊥ start

seq para

Col.stream(),

BufferedReader.lines(),

Files.lines(Path),

JarFile.stream(),

Pattern.splitAsStream(),

Random.ints()

Col.parallelStream()

BaseStream.sequential()
BaseStream.parallel()

BaseStream.sequential()

BaseStream.parallel()

Figure 3: A proper subset of the relation E→ in the labeled transition system E =

(ES , EΛ, E→). The relation depicts valid transitions between stream execution modes. The ⊥

state is a phantom initial state immediately prior to stream creation. States “seq” is sequential

and “para” is parallel.

This exclusion is part of the scheme to identify stream creation from the per-

spective of client applications. It does not limit the input but rather enables335

accurate identification.

3.4. Tracking Streams and Their Attributes

We discuss our approach to tracking streams and their attributes (i.e., state)

using a series of labeled transition systems (LTSs). The LTSs are used in the

typestate analysis (section 3.5).340

3.4.1. Execution Mode

Definition 1. The LTS E is a tuple E = (ES , EΛ, E→) where ES = {⊥, seq , para}

is the set of states, EΛ is a set of labels, and E→ is a set of labeled transitions.

The labels EΛ corresponds to method calls that either create or transform the

execution mode of streams. We denote the initial stream (“phantom”) state as345

⊥. Different stream creation methods may transition the newly created stream

to one that is either sequential or parallel. Figure 3 portrays a proper subset of

the relation E→ (Col is Collection, “seq” is sequential and “para” is parallel).
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Transitions stemming from the ⊥ state represent the numerous stream creation

methods (section 3.3). Although it is possible to create streams directly via350

a constructor, Java 8 Streams are normally created from either existing data

structures (such as is the case with Collection.stream()) or various factory

methods, as shown in figs. 3 and 4.

As an example, the stream created on line 6, listing 2a would transition from

⊥ to the seq state, while the stream created at line 33 would transition from355

seq to the para state as a result of the corresponding call on line 34. The rules

governing these transitions are illustrated in fig. 3.

3.4.2. Ordering

Whether a stream has an encounter order depends on the stream source

(run time) type and the intermediate operations. Certain stream sources (e.g.,360

List, arrays) are intrinsically ordered, whereas others (e.g., HashSet) are not.

Some intermediate operations (e.g., sorted()) may impose an encounter order

on an otherwise unordered stream, and others may render an ordered stream

unordered (e.g., unordered()). Further, some terminal operations may ignore

encounter order (e.g., forEach()) while others (e.g., forEachOrderer()) abide365

by it [5]. The LTS for tracking stream ordering is shown in definition 2.

Definition 2. The LTS O for tracking stream ordering is the tuple O =

(OS , OΛ, O→) where OS = {⊥, ord , unord} and other components are in line

with definition 1.

Figure 4 portrays a proper subset of the relation O→, which depicts valid370

transitions between stream ordering modes (“ord” is ordered and “unord” is un-

ordered). As with ES , ⊥ is a phantom initial state immediately before stream

creation. For presentation, the static method Stream.concat(Stream,Stream)

is modeled as an instance method where the receiver represents the first parame-

ter, i.e., the origin state is that of the first parameter, and the state of the second375

parameter is the sole explicit parameter (an example of stream concatenation

is shown in listing 8 and discussed in the surrounding text).
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⊥

start

ord unord

Arrays.stream(T[]),

Stream.of(T...),

IntStream.range(),

Stream.iterate(),

BitSet.stream(),

Col.parallelStream()

Stream.generate(),

HashSet.stream(),

PriorityQueue.stream(),

CopyOnWrite.parallelStream(),

BeanContextSupport.stream(),

Random.ints()

Stream.sorted()

BaseStream.unordered(),

Stream.concat(unordered),

Stream.concat(ordered)

Stream.sorted(),

Stream.concat(ordered) BaseStream.unordered(),

Stream.concat(unordered)

Figure 4: A proper subset of the relation O→ in O = (OS , OΛ, O→). The relation depicts

valid transitions between stream ordering modes. ⊥ is a phantom initial state immediately

prior to stream creation. The static method Stream.concat(Stream, Stream) is modeled as

an instance method where the first parameter is the receiver and the state of the second

parameter is the sole explicit parameter. States “ord” is ordered and “unord” is unordered.

For instance, the stream created on line 6, listing 2a would transition from ⊥

to the unord state due to the call to HashSet.stream(). Although the compile-

time type of unorderedWidgets is Collection (line 1), we use an interproce-380

dural type inference algorithm (explained next) to approximate HashSet. The

stream created at line 33, on the other hand, would transition from ⊥ to the ord

state as a result of orderedWidgets having the approximated run time type of

ArrayList (line 10). The rules for these transitions appear in fig. 4.

Approximating Stream Source Types and Characteristics. The fact that stream385

ordering can depend on the run time type of its source necessitates that its

type be approximated. As shown in fig. 4, from ⊥, a call to the instance

method BitSet.stream() would transition us to the ord state, whereas a call to

HashSet.stream() would transition us to the unord state. For this, we use an

interprocedural type inference algorithm via points-to analysis [44], more details390
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of which can be found in section 4.1, that computes the possible run time types

of the receiver from which the stream is created (see section 3.3). Once the

type is obtained, whether source types produce ordered or unordered streams

is determined via reflection. While details are in section 4.1, briefly, the type

is reflectively instantiated and its Spliterator [43] extracted. Then, stream395

characteristics, e.g., ordering, are queried [43]. This is enabled by the fact that

collections and other types supporting streams do not typically change their or-

dering characteristics dynamically. For example, during program execution, an

ArrayList would never transition from a container that maintains ordering to

one that does not. In fact, developers choose which container classes to instan-400

tiate based on such characteristics, which are predetermined and documented.

Using reflection in this way amounts to a kind of hybrid typestate analysis

where initial states are determined via dynamic analysis. If reflection fails, e.g.,

an abstract type is inferred, the default is to ordered and sequential. This choice

is safe considering that there is no net effect caused by our proposed transfor-405

mations, thus preserving semantics. Furthermore, to prevent ambiguity in state

transitions, it is required that each inferred type have the same attributes. Note

that abstracting the possible types to, for example, the least common super type

would not be adequate as sibling types may not share the same attributes, and

a receiver may not be able to take on the type of all siblings. The situation410

where a receiver has multiple possible run time types that are not all related

to the same ordering attribute conservatively results in a refactoring precondi-

tion failure for the particular input stream creation expression. Moreover, we

conservatively require that each possible (inferred) type be a leaf in the type

hierarchy; this guarantees that the stream’s source cannot be of a subtype that415

does not share the same attribute with its super type. Mistakenly inferring that

a stream is unordered could have disastrous consequences in terms of semantics

preservation as our performance improvements could inevitably change program

behavior.

The following is an example of a stream creation expression that fails precon-420

ditions due to its possible run time types having inconsistent ordering attributes:
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1 void foo(int bar) {

2 Set set = null;

3 if (bar > 0) set = new HashSet();

4 else set = new TreeSet();

5 set.parallelStream();

6 }

On line 5, the receiver set, using intraprocedural analysis, has the possible

types {HashSet, TreeSet}, meaning that the stream can be either ordered (in

the case of TreeSet) or unordered (in the case of HashSet), creating a transition

ambiguity per fig. 4. A similar situation could arise with execution mode in fig. 3.425

3.5. Tracking Stream Pipelines

Tracking stream pipelines is essential in determining satisfied preconditions.

Pipelines can arbitrarily involve multiple methods and classes as well as be

data-dependent (i.e., spanning multiple branches). This kind of complication

is shown in listing 8, where streams are stored in variables and can thus be430

passed to methods as parameters, stored in fields, and aliased. In fact, during

our evaluation (section 4), we found many real-world examples that use streams

interprocedurally.

Our automated refactoring approach involves developing a variant of types-

tate analysis [35,36] to track stream pipelines and determine stream state when435

a terminal operation is issued. Typestate analysis is a program analysis that

augments the type system with “state” information and has been traditionally

used for prevention of program errors such as those related to resource usage.

It works by assigning each variable an initial (⊥) state (cf. figs. 3 and 4). Then,

(mutating) method invocations change the object’s state. A lattice represents440

states, and LTSs represent possible transitions. If each method invocation se-

quence on the receiver does not eventually change the object back to the ⊥ state,

the object may be left in a nonsensical state, indicating the potential presence

of a bug.
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Our typestate analysis makes use of a call graph, which is created via a445

k-CFA call graph construction algorithm [45], making our analysis both object

and context sensitive (the context being the k-length call string). In other

words, it adds context so that method calls to an object creation site (new

operator) can be distinguished from one another [46, Ch. 3.6]. It is used here

to consider client-side invocations of API calls as object creations. Setting450

k = 1 would not suffice as the analysis would not consider the client contexts

as stream creations. As such, at least for streams, k must be >= 2. Although

k is flexible in our approach, we use k = 2 as the default for streams and k = 1

elsewhere. Section 4.2.1 discusses how k was set during our experiments, as well

as a heuristic to help guide developers in choosing a sufficient k.455

We formulate a variant of typestate since operations like sorted() return

(possibly) new streams derived from the receiver stream with their attributes

altered. Definition 3 portrays the formalism capturing the concept of typestate

analysis used in the remainder of this section. Several generalizations are made

to extract typestate at a particular program point.460

Definition 3 (Typestate Analysis). Define TStateLTS (is, exp) = S where LTS

is a labeled transition system, is a stream instance, exp an expression, and S

the possible states of is at exp according to LTS.

In definition 3, exp, an expression in the Abstract Syntax Tree (AST), is

used to expose the internal details of the analysis. Typically, typestate is used465

to validate complete statement sequences. Regarding definition 3, this would

be analogous to exp corresponding to a node associated with the last state-

ment of the program. In our case, we are interested in typestates at partic-

ular program points; otherwise, we may not be able to depict typestate at

the execution of the terminal operation accurately. For example, let is be the470

stream on line 6, listing 2a and exp the method call collect() at line 9. Then,

TStateO(is, collect(..)) = {ord} as depicted in fig. 4.

Traditional typestate analysis is used with (mutating) methods that alter

object state. The Stream API, though, is written in an immutable style where
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each operation returns a stream reference that may refer to a new object. A475

näıve approach may involve tracking the typestates of the returned references

from intermediate operations. Doing so, however, would produce an undesirable

result as each stream object would be at the starting state.

Section 3.4 treats intermediate operations as being (perhaps void returning)

methods that mutate the state of the receiver. This makes the formalism con-480

cise. However, in actuality, intermediate operations are value returning methods,

returning a reference to the same (general) type as the receiver. As such, the

style of this API is that of immutability, i.e., “manipulating” a stream involves

creating a new stream based on an existing one. In such cases, the receiver is

then considered consumed, i.e., any additional operations on the receiver would485

result in a run time exception, similar to linear type systems [47].

Our generalized typestate analysis works by tracking the state of stream

instances as follows. For a given expression, the analysis yields a set of possible

states for a given instance following the evaluation of the expression. Due to

the API style, a typestate analysis that has a notion of instances that are based490

on other instances is needed. As such, we compute the typestate of individual

streams and proceed to merge the typestates to obtain the final typestate when

a terminal operation consumes the stream. The final typestate is derived at

this point because that is when all of the (queued) intermediate operations

will execute. Moreover, the final typestate is a set due to dataflow analysis of495

multiple paths.

3.5.1. Intermediate Streams

A stream is created via APIs calls stemming from the ⊥ state as discussed

in section 3.4. Recall that intermediate operations may or may not also create

streams based on the receiver. We coin such streams as intermediate streams500

as they are used to progress the computation to a final result. Moreover, in-

termediate streams cannot be instantiated alone; they must be based on (or

derived from) existing ones. If an intermediate stream is derived from another

intermediate stream, then, there must exist a chain of intermediate stream cre-
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Listing 10 Sequencing stream instance derivations.
(a) Before refactoring.

1 void m(int x) {

2 Stream s1 =

3 o.stream();//1

4 Stream s2 = null;

5 if (x > 0)

6 s2 = s1.filter(..);//2

7 else

8 s2 = s1.parallel()

9 .filter(..);//3

10 int c = s2.count();}

(b) After refactoring.

1 void m(int x) {

2 Stream s1 =

3 o.stream()parallelStream();

4 Stream s2 = null;

5 if (x > 0)

6 s2 = s1.filter(..);

7 else

8 s2 = s1.parallel()

9 .filter(..);

10 int c = s2.count();}

ations that starts at a non-intermediate stream. Due to conditional branching505

and polymorphism, there may be multiple such (possible) chains. Intermediate

streams must be appropriately arranged so that the correct final state may be

computed.

To sequence stream instances, we require a “predecessor” function Pred(is) =

{is1 , . . . , isn} that maps a stream is to a set of streams that may have been used510

to create is. Pred(is) is computed by using the points-to set of the reference

used as the receiver when is was instantiated.

We now demonstrate the predecessor function using the code in listing 10a.

Suppose we would like to know the state of the stream referred to by s2 be-

fore the commencement of the terminal operation count() on line 10. The515

points-to set of s2 consists of the objects created by each of the filter()

operations on lines 6 and 9, respectively. These allocation sites have been num-

bered in comments in the source code using comments.9 As such, we have that

PointsTo(s2) = {filter()2, filter()3}.10 For the first call to filter(), s1

refers to the receiver. Because PointsTo(s1) = {stream()1} (from line 3), we520

9For presentation purposes, we treat API calls as abstract object creation sites instead of

the traditional new operators as in [36]. However, setting k > 1 and using call-string context

sensitivity is how this effect is actually achieved.
10We purposely use API-level allocation sites so as to remain as implementation-neutral as

possible.
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have that Pred(filter()2) = stream()1. Finally, because stream() is not an

intermediate operation, we have that Pred(stream()1) = ∅.

Conversely, for the call to filter() on line 9, the receiver is the result of

s1.parallel(). Interestingly, no allocation takes place here as parallel()

simply sets a field value in the receiver and returns its reference, i.e., s1.525

Since PointsTo(s1) = {stream()1}, we also have that Pred(filter()3) =

{stream()1}. Definition 4 describes this function more generally.

Definition 4 (Predecessor Objects). Define Pred(o.m()) = {i1, i2, . . . , in} where

o is an object reference, m a method, o.m() results in an object reference, and

ik ∈ {i1, i2, . . . , in} for 1 ≤ k ≤ n an abstract heap object identifier:

Pred(o.m()) =

∅ if m() is not intermediate.

PointsTo(o) o.w.

3.5.2. Typestate Merging

Since intermediate operations possibly create new streams based on the re-530

ceiver, the typestate analysis will generate different states for any stream pro-

duced by an intermediate operation. We are interested in, however, the final

state just before the commencement of the terminal operation, which results in

stream consumption. Recall from section 3.4.1 that ⊥ models an initial state.

As such, ⊥ will symbolize the initial state of intermediate streams. In other535

words, although an intermediate stream may “inherit” state from the stream

from which it is derived, in our formalism, we use ⊥ as a placeholder until we

can derive what exactly the state should be. To this end, we introduce the

concept of typestate merging.

First, we define a state selection function that results in the first state if it540

is not ⊥ and the second state otherwise:
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Definition 5 (State Selection). Define Select : S × S → S to be the state

selection function:

Select(si, sj) =

sj if si = ⊥

si o.w.

Definition 5 “selects” the “most recent” state in the case that the typestate

analysis determines it for the instance under question and a previous state

otherwise. For example, let si = ⊥ and sj = para. Then, Select(si, sj) = para.545

Likewise, let si = unord and sj = ord . Then, Select(si, sj) = unord .

Next, we define the state merging function, which allows us to merge two

sets of states, as follows:

Definition 6 (State Merging). Define Merge(Si, Sj) = S to be the typestate

merging function:

Merge(Si, Sj) =


Si if Sj = ∅

Sj if Si = ∅

{Select(si, sj) | si ∈ Si ∧ sj ∈ Sj} o.w.

As an example, let Si = {⊥} and Sj = {seq , para}. Then, Merge(Si, Sj) =

{seq , para}. Likewise, let Si = {ord , unord} and Sj = {ord , unord}. Then,550

Merge(Si, Sj) = {unord , ord}.

Finally, we define the notation of merged typestate analysis:

Definition 7 (Merged Typestate Analysis). Define MTStateLTS (is, exp) = S

where LTS is a labeled transition system, is a stream, exp an expression, to be

the typestate analysis merging function:

MTStateLTS (is, exp) =
TStateLTS (is, exp) if Pred(o.m()) = ∅⋃
isk∈Pred(is)

Merge(TStateLTS (is, exp),MTStateLTS (isk , exp))
o.w.
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This final function aggregates typestate over the complete method call chain

until the terminal operation after exp. For example, let is = filter()2 ∈555

PointsTo(s2) and exp = s2.count(..) from listing 10a. Then, MTStateE(is, exp)

= {Merge(TStateE(is, exp),MTStateO(stream()1, exp))}

= {Merge(TStateE(is, exp),TStateO(stream()1, exp))}

= {Merge({⊥}, {seq , para})}

= {Select(⊥, seq),Select(⊥, para)}

= {seq , para}

3.5.3. Identifying Origin Streams

Once a stream’s merged typestate at the terminal operation has been deter-

mined, the relationship between this stream and the original (non-intermediate)

stream is examined. Because a series of intermediate operations can form a chain560

of streams starting at a non-intermediate stream, the stream being consumed by

a terminal operation may not be the original stream, i.e., it may be one of the

derived, intermediate streams. We denote original streams in the computation

as origin streams. In terms of definition 7, origin streams are those processed

in the base case.565

An intermediate stream may have multiple origin streams due to branch-

ing, polymorphism, etc. Identifying origin streams is important in tracking

the complete stream pipeline, as well locating potential areas where refactor-

ing transformations may take place (as in section 3.8). Moreover, identify the

stream origin as, e.g., initial stream ordering is dependent on the type from570

which it was derived or the (static) method that was used to create it. In other

words, it is needed to determine the transitions from the start states in figs. 3

and 4. We define the concept of origin objects more generally as follows:

Definition 8 (Origin Objects). Define Origins(o.m()) = {i1, i2, . . . , in} where

o is an object reference, m() a method, o.m() results in an object reference, and

28



ik ∈ {i1, i2, . . . , in} for 1 ≤ k ≤ n an abstract heap object identifier:

Origins(o.m()) =



∅ if o.m() == null.

{o.m()} if Pred(o.m()) = ∅⋃
ij∈Pred(o.m())

Origins(ij) o.w.

To illustrate, consider the code in listing 10a. We have that Origins(s2.count())575

= Origins(filter()2) ∪Origins(filter()3)

= Origins(stream()1) ∪Origins(stream()1)

= {stream()1} ∪ {stream()1}

= {stream()1}

3.6. Inferring Behavioral Parameter Side-effects

In this section, we more formally define what it means for behavioral param-

eters (λ-expressions) that will execute as part of a stream’s pipeline to possibly

contain side-effects. Side-effect considerations are part of the refactoring pre-

condition checks in table 1 and are an essential part of determining whether580

a sequential stream can be safely converted to one whose pipeline executes in

parallel. The following more formally defines the λ-expressions associated with

streams:

Definition 9 (Stream λ-expressions). Define the function λ(is) = λexp that

maps a streams instance is to a λ-expression λexp used in creating is. If no585

λ-expression is used creating is, then λexp = •, an “empty” expression not

associated with any meaningful instruction (no-op).

Let is be the stream created as a result of the filter() operation on line 16

of listing 3. Then, λ(is) = w -> w > 43.2. Likewise, let is be the stream that

results from skip() on line 21. Then, λ(is) = •.590
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Next, we describe the meaning of λ-expressions to contain side-effects. Note

that this function must be approximated since the analysis takes place at compile

time; section 4.1 discusses how the analysis is implemented in our tool:

Definition 10 (λ-expression Side-effects). Define predicate LSideEffects(λexp)

on λ-expressions to be true iff λexp modifies a heap location.595

For instance, let λexp represent w -> w > 43.2 from above. Then, we

have ¬LSideEffects(λexp) since w does not represent a heap location. Let

λexp represent s -> results.add(s) from line 60 of listing 9. Then, we

have LSideEffects(λexp) since result is a heap object add add() is a mutating

method.600

Definition 11 (Stream Side-effects). Define the predicate SSideEffects(is) on

streams to be true iff is is associated with a pipeline whose operations contain

a λ-expression with possible side-effects:

SSideEffects(is) ≡ LSideEffects(λ(is))∨

∃o.m(p)[is ∈ PointsTo(o) ∧ m is a term op ∧ p is a λ-exp∧

LSideEffects(p)] ∨
∨

isj∈Pred(is)

SSideEffects(isj )

Informally, a stream instance is has possible side-effects, i.e., SSideEffects(is),

iff either a λ-expression used in building is, i.e., λ(is), has side-effects, i.e.,

LSideEffects(λ(is)), or there exists a call o.m(p) such that o refers to is,

i.e., is ∈ PointsTo(o), m is a terminal operation, and parameter p is a λ-605

expression with possible side-effects, i.e., LSideEffects(p), or if there is a prede-

cessor stream instance isj of is, i.e., isj ∈ Pred(is), that has possible side-effects,

i.e., SSideEffects(isj ).

Let is be the stream created on lines 59–59 of listing 9, i.e., filter(s ->

pattern.matcher(s).matches()). Assume that the λ-expression does not con-

tain side-effects. Then, we have:

¬LSideEffects(λ(is)) ≡ ¬LSideEffects(s -> pattern.matcher(s).matches()).
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However, consider the terminal operation called on line 60, i.e., forEach(s ->

results.add(s)). We have that LSideEffects(s -> result.add(s)). Thus,610

we have that SSideEffects(is).

3.7. Determining Whether Reduction Ordering Matters

To obtain a result from stream computations, a terminal (reduction) op-

eration must be issued. Determining whether the ordering of the stream im-

mediately before the reduction matters (ROM) equates to discovering whether615

the reduction result is the same regardless of whether the stream is ordered or

not. In other words, the result of the terminal operation does not depend on

the ordering of the stream for which the operation is invoked, i.e., the value

when the stream is ordered is equal to the value when the stream is unordered.

Some reductions (terminal operations) do not return a value, i.e., they are void620

returning methods. In these cases, the behavior rather than the resulting value

should be the same.

Terminal operations fall into two categories, namely, those that produce a

result, e.g., count(), and those that produce a side-effect, normally by accepting

a λ-expression, e.g., forEach() [5]. These situations are separately considered,625

as shown in fig. 5. Here, solid arrows represent data-flow, while dashed arrows

are annotations. Figures 5a and 5b describe the two situations.

3.7.1. Non-scalar Result Producing Terminal Operations

In the case of non-scalar return values, whether the return type maintains

ordering is determined by reusing the reflection technique described in sec-630

tion 3.4.2. Specifically, a stream is reflectively derived from an instance of the

non-scalar return (run time) type approximations and its characteristics exam-

ined. And, from this, whether reduction order matters is determined as follows.

If it is impossible for the returned non-scalar type to maintain an element order-

ing, e.g., it is a HashSet, then, the result ordering cannot make a difference in the635

program’s behavior. If, on the other hand, the returned type can maintain an

ordering, we conservatively determine that the reduction ordering does matter.
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Table 3: “Reduction ordering matters” (ROM) lookup table. Column r. type is the declared

return type of the terminal operation in question. Column ord is the ordering attribute of the

return type. Column t. operation is the terminal operation corresponding to the reduction.

Column ROM is an abbreviation for Reduce Ordering Matters and is true iff ordering of the

result produced by the (terminal) reduction operation must be preserved. Cells whose value

is N/A may be either true or false. A value of ‘?’ represents an unknown value.

r. type ord t. operation ROM

non-scalar unord N/A F

non-scalar ord N/A T

void N/A forEach() F

void N/A forEachOrdered() T

scalar N/A sum()* F

scalar N/A min() F

scalar N/A max() F

scalar N/A count() F

scalar N/A average()* F

scalar N/A summaryStatistics()* F

scalar N/A anyMatch() F

scalar N/A allMatch() F

scalar N/A noneMatch() F

scalar N/A findFirst() T

scalar N/A findAny() F

scalar N/A collect() ?

scalar N/A reduce() ?

* Only applicable to numeric streams.

As before, if there is any inconsistencies between the ordering characteristics

of the approximated types, the default is ordered. This is captured in fig. 5a

and table 3 under the non-scalar rows (column r. type is return type). The640

N/A in column t. operation indicates any terminal operation and, in this case,

any such operation returning a non-scalar type. The term “collection” refers

to any non-scalar type such as those implementing java.util.Collection as

well as arrays, which are inherently ordered.
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(a) For non-scalar result-producing terminal

operations.

(b) For side-effect producing terminal opera-

tions.

Figure 5: Scenarios for whether reduce ordering matters (ROM).

3.7.2. Side-effect Producing Terminal Operations645

When there is a void return value, as is the case with side-effect produc-

ing terminal operations, then, we need to know the order in which the stream

elements are “served” to the λ-expression argument producing the side-effect.

Currently, void terminal operations that maintain element ordering are also a

parameter to our analysis. As with determining stateful intermediate opera-650

tions, a more sophisticated analysis would be needed to possibly approximate

this characteristic. In the current Java 8 Stream API, there are only two such

methods, namely, forEach() and forEachOrdered(), as seen in fig. 5b and ta-

ble 3 under the “void” return type rows.

3.7.3. Scalar Result Producing Terminal Operations655

The last case is perhaps the most difficult. While discussing whether non-

scalar types (e.g., containers) maintain element ordering seems natural, when

the reduction is to a scalar type, it is challenging to determine whether or

not the element ordering used to produce the resulting value had any influence

over it. Another view of the problem involves determining whether or not the660
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operation(s) “building” the result from the stream are associative. Examples of

associative operations include numeric addition, minimum, and maximum, and

string concatenation [5]. To address this, we divide the problem into determining

the associativity of specialized and general reduction operations.

Specialized Reduction Operations. Luckily, the number and associativity prop-665

erty of specialized reduction operations are fixed. As such, the list of specialized

operations along with their associativity property is input to the approach. The

reduction order matters (ROM) values compiled by the authors via API docu-

mentation examination for the Java 8 Stream API is listed in table 3 under the

“scalar” return type rows.670

General Reduction Operations. The remaining general reduction operations are

reduce() and collect(). We have already covered the cases where these op-

erations return non-scalar types in the first two rows of table 3. What remains

is the cases when these operations return scalar types. Due to the essence of

collect(), in practice, the result type will most likely fall into the non-scalar675

category. In fact, collect() is a specialization of reduce() meant for muta-

ble reductions. Recall from section 2 that such operations collect results in a

container such as a collection [5].

The generality of these reduction operations make determining whether or-

dering matters difficult. For example, even a simple sum reduction can be680

difficult for an automated approach to analyze. Consider the following code [5]

that adds Widget weights together using reduce():

widgets.stream().reduce(0, (sum, b) -> sum + b.getWeight(), Integer::sum);

The first argument is the identity element; the second an accumulator function,

adding a Widget’s weight into the accumulated sum. The last argument com-

bines two integer sums by adding them. The question is how, in general, can685

we tell that this is performing an operation that is associative like summation?

In other words, how can we determine that the reducer computation is inde-

pendent of the order of its inputs? It turns out that this is precisely the reducer
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commutativity problem [22]. Unfortunately, this problem has been shown to be

undecidable by Chen et al. [22]. While we will consider approximations and/or690

heuristics as future work, currently, our approach conservatively fails precon-

ditions in this case as indicated by the question marks in table 3. During our

experiments detailed in section 4, these failures only accounted for 8.06%.

3.8. Transformation

Once a stream has passed preconditions, there may be multiple possible ways695

to carry out the corresponding transformation. However, not all transformations

may be ones that an expert human developer would have chosen. Here, we strive

to select transformations that are (i) semantically equivalent to the original, (ii)

exposing the most possible parallelism, and (iii) minimal, i.e., requiring the least

amount of code changes. This last point reduces invasiveness.700

Stream pipelines, i.e., method call chains of intermediate operations ending

in a terminal operation, can be complex with chains possibly spanning multiple

branches, methods, and even files. To assist in the transformation, we leverage

the Pred relation from definition 4 by building a predecessor tree PT , where each

node represents a stream instance (call site), an edge between nodes ni and nj705

exists iff nj ∈ Pred(ni), and the root is a node n0 such that ∀n ∈ PT [n0 ∈

Origins(n)] (see definition 8). A separate tree exists for each for each origin

stream in the program. Origin streams are also those that are identified for

transformation, thus, the transformation algorithm begins at the root of each

tree if a transformation applies to the stream represented by the root.710

3.8.1. Execution Mode

Figure 6a depicts a predecessor tree for the code snippet in listing 10a,

while algorithm 1 depicts the algorithm for transforming a stream to parallel

(transformation to sequential is similar). Steps for already parallel streams are

shown for completeness. The action at line 10 is valid because intermediate715

operations like parallel() are processed lazily, i.e., when a terminal operation

has been issued. As such, “[t]he most recent sequential or parallel mode setting
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Algorithm 1 Convert stream to parallel

1: for all n ∈ PT such that n is a leaf do

2: curr ← n

3: while curr 6= NIL do

4: if Method(curr) = sequential() then

5: Schedule curr for removal.

6: else if Method(curr) = parallel() then

7: if ∀a ∈ Ancestors(curr)[|Children(a)| > 1] then {Nodes up from curr to the root

have multiple children}

8: Schedule curr for removal. {To avoid redundancy.}

9: else {There is a straight-line “chain” from curr to the root}

10: break {parallel() remains with no further modification.}

11: end if

12: else if Method(curr) = stream() then {Parent(curr) = NIL}

13: Schedule curr to be replaced by parallelStream().

14: else if Method(curr) 6= parallelStream() then {curr is not already parallel}

15: Schedule parallel() to be inserted immediately after curr .

16: end if

17: curr ← Parent(curr)

18: end while

19: end for

20: Execute all scheduled transformations.

applies to the execution of the entire stream pipeline” [48]. Ancestors is defined

on a node n as follows:

Ancestors(n) =


∅ if n = NIL∨

Parent(n) = NIL

Parent(n) ∪Ancestors(Parent(n)) o.w.

720

Figure 6b shows the resulting predecessor tree after applying algorithm 1 to the

predecessor tree in fig. 6a, while listing 10b is the transformed code.
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stream()1

filter()2 parallel()

filter()3

(a) Before transformation.

parallelStream()1

filter()2 filter()3

(b) After conversion to parallel.

Figure 6: Predecessor tree for listing 10a.

3.8.2. Unordering

Unordering a stream, i.e., actions taken for streams passing P3 (table 1) or

P4 (table 2), is somewhat similar to altering its execution mode (above) but with725

some important differences and special considerations. Firstly, although stream

execution mode can be changed at the origin stream by replacing the appropriate

API call (e.g., stream() to parallelStream()), since stream ordering can be

dependent on its source collection type, for semantics preservation and to limit

refactoring invasiveness, unordering does not occur in a similar way. Instead,730

unordering transformations always take place via a call to the unordered()

intermediate operation (e.g., line 43 in listing 7b).

While the unordering transformation can be accomplished similar to al-

gorithm 1 by substituting parallel() with unordered() and sequential()

with sorted(), there are some special considerations regarding the insertion of735

unordered(). For instance, to maximize efficient parallel computation, such

calls are inserted before all stateful intermediate operations. This can be seen

on line 43 in listing 7b, where unordered() is placed before distinct(), a

stateful intermediate operation.

4. Evaluation740

4.1. Implementation

Our approach was implemented as a publicly available, open source Eclipse

IDE [37] plug-in [34] and built upon WALA [38] and SAFE [39]. Eclipse is

leveraged for its extensive refactoring support [49] and that it is completely
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open-source for all Java development. WALA is used for static analyses such745

as side-effect analysis (ModRef), and SAFE, which depends on WALA, for its

typestate analysis. SAFE was altered for programmatic use and “intermediate”

typestates (cf. section 3.5.2). For the refactoring portion, Eclipse ASTs with

source symbol bindings are used as an intermediate representation (IR), while

the static analysis consumes a Static Single Assignment (SSA) [50] form IR.750

Per the discussion in section 3.4.2, since stream ordering may depend on the

stream’s source run time type, to determine stream ordering, our implementa-

tion interprocedurally approximates (using a points-to analysis) the run time

type of stream sources via type propagation using the iterative fixed-point solver

available in WALA. If the type cannot be determined accurately in this way,755

the type’s ordering is defaulted to ordered. Although this may cause missed

optimization opportunities, an ordered attribute will not cause our approach to

take action, guaranteeing semantics preservation.

Once the possible stream source type(s) has been obtained, reflection is

used to determine ordering attributes. First, built-in reflection mechanisms are760

utilized (i.e., Class.newInstance()). However, this can be problematic when

either a default (no-arg) constructor does not exist or is not accessible. In such

cases, Objenesis [51], a tool normally used for Mock Objects, is used to bypass

constructor calls. Ordering is retrieved by obtaining a stream from an instance

of type (again, via reflection) and subsequently calling the characteristics()765

method on the newly created stream instance’s Spliterator [43].

The tool maintains a list of stateful intermediate operations and whether

reduction order matters for terminal operations (table 3). This may hinder

the tool’s extensibility in the case that future API versions include additional

operations and where third-party stream libraries are used. Section 6 discusses770

plans to have this done more flexibly.

As discussed in section 3.5, our approach utilizes a k-CFA call graph con-

struction algorithm. To make our experiments tractable and to treat client-side

API invocations as stream creations (since the focus of this work is on manip-

ulation of client code), we made k an input parameter to our analysis (with775
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k = 2 being the default as it is the minimum k value to consider client-code)

for methods returning streams and k = 1 elsewhere. Recall that k amounts

to the call string length in which to approximate object instances, thus, k = 1

would consider constructor calls as object creation locations, while k = 2 would

consider calls to methods calling constructors as (“client”) object creation sites.780

The tool currently uses a heuristic to inform developers when k is too small via

a precondition failure. It does so by checking that call strings include at least

one client method starting from the constructor call site. Future work involves

automatically determining an optimal k, perhaps via stochastic optimization.

The call graph used in the typestate analysis is pruned by removing nodes that785

do not have reaching stream definitions.

4.2. Experimental Evaluation

Our evaluation involved studying 18 open source Java applications and li-

braries of varying size and domain (table 4). Subjects were also chosen such

that they are using Java >= 8 and have at least one stream declaration (i.e.,790

a call to a stream API) that is reachable from an entry point (i.e., a candi-

date stream). Column KLOC denotes the thousands of source lines of code,

which ranges from ∼1K for monads to ∼586 for elasticsearch. Column eps is

the number of entry points. For non-library subjects, all main methods were

chosen, otherwise, all unit test methods were chosen as entry points. Column795

k is the maximum k value used (see section 4.2.1). Subjects compiled correctly

and had identical unit test results and compiler warnings before and after the

refactoring.

The analysis was executed on an Intel Xeon E5 machine with 16 cores and

60GB RAM and a 55GB maximum heap size. Column tm (m) is the running800

time in minutes, averaging ∼34.04 secs/KLOC. The running time ranges from

0.05m to 590.43m, with the latter being for spring-framework. We consider

spring-framework to be an outlier regarding running time as it is an abnormally

large and complex framework. Furthermore, because it has the largest amount

of entry points (which correspond to unit tests for frameworks) at 5,981, we805
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Table 4: Experimental results. Column subject is the studied project, column KLOC is the

project’s thousands of source lines of code, column eps is the total number of entry points used

in the analysis, column k is the maximum k in the subject used to build the nCFA, column

str is the total number of syntactic streams, i.e., those appearing in the source code, column

cnd is the total number of (origin) streams reachable from the entry points, column rft is the

total number of (origin) streams that are optimizable, columns P* are streams passing the

respected preconditions, and column t (m) is the total processing time in minutes.

subject KLOC eps k str cnd rft P1 P2 P3 t (m)

bootique 4.91 1,391 4 68 34 10 2 8 0 144.72

cryptomator 7.99 148 3 13 4 0 0 0 0 2.26

dari 64.86 3 2 19 4 0 0 0 0 1.76

elasticsearch 585.71 141 13 250 80 12 0 12 0 118.00

htm.java 41.14 21 4 189 34 10 0 10 0 1.85

JabRef 138.83 76 6 305 79 6 0 6 0 9.41

JacpFX 23.79 195 4 54 4 3 3 0 0 2.31

jdpa 19.96 25 4 38 28 15 1 13 1 31.88

jdk8-expb 3.43 134 4 55 26 4 0 4 0 0.78

jetty 354.48 106 4 65 21 7 3 4 0 17.85

JetUML 20.95 660 2 7 7 2 0 2 0 0.76

jOOQ 154.01 43 4 24 5 1 0 1 0 12.94

koral 7.13 51 3 8 6 6 0 6 0 1.06

monads 1.01 47 2 3 1 1 0 1 0 0.05

retroλ 5.14 1 4 12 8 6 3 3 0 0.66

springc 188.46 5,981 4 61 54 29 0 29 0 590.43

streamql 4.01 92 2 22 22 2 0 2 0 0.72

threetend 27.53 36 2 2 2 2 0 2 0 0.51

Total 1,653.35 9,151 13 1,160 419 116 12 103 1 937.94

a jdp is java-design-patterns.

b jdk8-exp is jdk8-experiments.

c spring is a portion of spring-framework.

d threeten is threeten-extra.
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hypothesize that this, along with 188.46K LOC and 54 streams, contributed to

a substantially larger running time than the other subjects.

Thus, not including spring-framework, the average run time in secs/KLOC

is ∼14.23. In our original conference paper [40], where only 11 subjects were

studied, this value was ∼6.60. While examining this discrepancy more closely,810

we found that the 6 (non-spring-framework) subjects had significantly more

entry points that the original 11. The average number of entry points per

subject for the initial corpus and the new corpus was ∼68.27 and ∼176.11,

respectively. Again, we suspect that the increase in entry points caused the

additional run time per KLOC. After a closer investigation, we found that the815

secs/KLOC/entry point to be comparable between the two corpora, namely,

∼0.00879 for the original and ∼0.00449 for the new subjects.

Lastly, an examination of three of the subjects revealed that over 80% of

the running time was for the typestate analysis, which is performed by SAFE.

This analysis incorporates aliasing information and can be lengthy for larger820

applications. Unfortunately, SAFE is not actively being maintained, and it is

difficult to say whether its performance can be improved. However, since our

approach is automated, it can be executed on a nightly basis or before major

releases.

4.2.1. Setting k for the k-CFA825

As discussed in section 3.5, our approach takes as input a maximum call

string length parameter k, which is used to construct the call graph using nCFA.

Each call graph node is associated with a context, which, in our case, is the

call string. This allows our analysis to approximate stream object creation in

the client code rather than in the framework, where the stream objects are830

instantiated. Otherwise, multiple calls to the same API methods that create

streams would be considered as creating one new stream.

During our experiments, a default k value of 2 was used. This is the minimum

k value that can be used to distinguish client code from framework stream

creation. However, depending on which stream framework methods are utilized835
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in a particular project, this value may be insufficient. We detect this situation

via a heuristic of examining the call string and determining whether any client

code exists. If not, k may be too small.

Setting k constitutes a trade-off. A k that is too small will produce correct

results but may miss streams. A larger k may enable the tool to detect and sub-840

sequently analyze more streams but may increase run time. Thus, an optimal

k value can be project-specific. In our experiments, however, we determined k

empirically based on a balance between run time and the ratio between total

(syntactically available) streams and candidate streams (i.e., those detected by

the typestate analysis). Notwithstanding, in keeping k between 2 and 4 (cf. ta-845

ble 4), good results and reasonable runtime were observed for most projects.

Thus, it was not difficult to find an “effective” k.

4.2.2. Intelligent Parallelization

Streams are still relatively new, and, as they grow in popularity, we expect

to see them used more widely. Nevertheless, we analyzed 419 (origin) candidate850

streams reachable from entry points (column cnd; column str is the number

of syntactically available streams, which include unreachable streams) across

18 subjects. Of those, we automatically refactored ∼27.68% (column rft for

refactorable) despite being highly conservative. These streams are the ones

that have passed all preconditions; those not passing preconditions were not855

transformed (cf. table 5).

Columns P1–3 are the streams passing the corresponding preconditions

(cf. tables 1 and 2). Columns P4–5 have been omitted as all of their values are 0.

The number of transformations can be derived from these columns as precondi-

tions are associated with transformations, amounting to 12+103+(1∗2) = 117.860

4.2.3. Refactoring Failures

Table 5 categorizes reasons why streams could not be refactored (column

failure), some of which correspond directly to preconditions (column pc). Col-

umn cnt depicts the count of failures in the respective category and further
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Table 5: Refactoring failures.Column failure is the failure category, column pc is the cor-

responding precondition from tables 1 and 2, and column cnt is the count of precondition

failures in the corresponding category.

failure pc cnt

F1. Inconsistent possible execution modes 1

F2. No stateful intermediate operations P5 1

F3. No terminal operation 18

F4. Reduce ordering matters P3 19

F5. Indeterminable reduction ordering 25

F6. Has side-effects
P1 4

P2 85

F7. Currently not handled 156

Total 310

categorized by precondition, if applicable. Nontrivial reasons streams were not865

refactorable include λ-expression side-effects (F6, 28.71%) and that the reduc-

tion ordering is preserved by the target collection (F4, 6.13%; c.f. section 2).

Not only do the refactoring failures shed light on the applicability of the ap-

proach to real-world software, but they also provide insight into the attributes

of the software and how developers write code that is either amenable or not870

amenable to parallelization.

The majority of the refactoring failures were due to cases currently not

handled by our tool (F7, 50.32%), which are rooted in implementation details

related to model differences between representations [34]. For example, streams

declared inside inner (embedded) classes are problematic as such classes are part875

of the outer AST but the instruction-based IR is located elsewhere. Though we

plan to develop more sophisticated mappings in the future, further investigation

revealed that 76.28% of the failures stemmed from only two subjects, namely,

JabRef and elasticsearch. For the remaining subjects, this failure only encom-

passed an average of 2.64%. Moreover, our tool was still able to refactor 18880

streams over JabRef and elasticsearch.
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Table 6: Average run times of JMH benchmarks.Column benchmark is the benchmark name.

Column orig is the original code in seconds per operation. Column refact is the refactored

code, also in seconds per operation. Column su is the speedup.

# benchmark orig (s/op) refact (s/op) su

1 shouldRetrieveChildren 0.011 (0.001) 0.002 (0.000) 6.57

2 shouldConstructCar 0.011 (0.001) 0.001 (0.000) 8.22

3 addingShouldResultInFailure 0.014 (0.000) 0.004 (0.000) 3.78

4 deletionShouldBeSuccess 0.013 (0.000) 0.003 (0.000) 3.82

5 addingShouldResultInSuccess 0.027 (0.000) 0.005 (0.000) 5.08

6 deletionShouldBeFailure 0.014 (0.000) 0.004 (0.000) 3.90

7 specification.AppTest.test 12.666 (5.961) 12.258 (1.880) 1.03

8 CoffeeMakingTaskTest.testId 0.681 (0.065) 0.469 (0.009) 1.45

9 PotatoPeelingTaskTest.testId 0.676 (0.062) 0.465 (0.008) 1.45

10 SpatialPoolerLocalInhibition 1.580 (0.168) 1.396 (0.029) 1.13

11 TemporalMemory 0.013 (0.001) 0.006 (0.000) 1.97

Other refactoring failures include F3 (5.81%), where stream processing does

not end with a terminal operation in all possible executions. This amounts to

“dead” code as any queued intermediate operations will never execute. F5 cor-

responds to the situation described in section 3.7.3 (8.06%), F1 to the situation885

where execution modes are ambiguous on varying execution paths (0.32%), and

F2 means that the stream is already optimized (0.65%).

4.2.4. Performance Evaluation

Many factors can influence performance, including dataset size, number of

available cores, JVM and/or hardware optimizations, and other environmen-890

tal activities. Nevertheless, we assess the performance impact of our refactor-

ing. Although this assessment is focused on our specific refactoring and sub-

ject projects, in the general case, it has been shown that a similar refactoring

done manually has improved performance by 50% on large datasets using four

cores [52, Ch. 6].895

Existing Benchmarks. We assessed the performance impact of our refactoring on

the subjects listed in table 4. One of the subjects, htm.java [53], has formal per-

formance tests utilizing a standard performance test harness, namely, the Java
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Microbenchmark Harness (JMH) [54]. Using such a test harness is important

in isolating causes for performance changes to the code changes themselves [52,900

Ch. 6.1]. As such, subjects with JMH tests will produce the best indicators of

performance improvements. Two such tests were included in this subject.

Converted Benchmarks. Although the remainder of the subjects did not include

formal performance tests, they did include a rich set of unit tests. For one

subject, namely, java-design-patterns [55], we methodically transformed existing905

JUnit tests that covered the refactored code to proper JMH performance tests.

This was accomplished by annotating existing @Test methods with @Benchmark,

i.e., the annotation that specifies that a method is a JMH performance test. We

also moved setup code to @Before methods, i.e., those that execute before each

test, and annotated those with @Setup. This ensures that the test setup is not910

included in the performance assessment. Furthermore, we chose unit tests that

did not overly involve I/O (e.g., database access) to minimize variability. In

all, nine unit tests were converted to performance tests and made our changes

available to the subject developers.

Augmenting Dataset Size. As all tests we designed for continuous integration915

(CI), they executed on a minimal amount of data. To exploit parallelism, how-

ever, we augmented test dataset sizes. For existing benchmarks, this was done

under the guidance of the developers [56]. For the converted tests, we chose

an N (dataset size) value that is consistent with that of the largest value used

by Naftalin [52, Ch. 6]. In this instance, we preserved the original unit test920

assertions, which all passed. This ensures that, although N has increased, the

spirit of the test, which may reflect a real-life scenario, remains intact.

Results. Table 6 reports the average run times of five runs in seconds per oper-

ation following five warm-up runs. Rows 1–9 are for java-design-patterns, while

rows 10–11 are for htm.java; benchmark names have been shortened for brevity.925

Column orig is the original program, refact is the refactored program, and

su is the speedup (runtimeold/runtimenew ). Values associated with parenthe-
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ses are averages, while the value in parenthesis is the corresponding standard

deviation. The average speedup resulting from our refactoring is 3.49.

4.2.5. Discussion930

The findings of Naftalin [52, Ch. 6] using a similar manual refactoring, that

our tool was able to refactor 27.68% of candidate streams (table 4), and the re-

sults of JMH tests on the refactored code (table 6) combine to form a reasonable

motivation for using our approach in real-world situations. Moreover, this study

gives us insight into how streams, and in a broader sense, concurrency, are used,935

which can be helpful to language designers, tool developers, and researchers.

As mentioned in section 4.2.2, columns P4–5 in table 4 all have 0 values.

Interestingly, this means that no (already) parallel streams were refactored by

our tool. Only 13 candidate streams, stemming from only two subjects, namely,

htm.java and JabRef, were originally parallel. This may indicate that develop-940

ers are either timid to use parallel streams because of side-effects, for example,

or are (manually) unaware of when using parallel streams would improve per-

formance [52]. This further motivates our approach for automated refactoring

in this area.

From table 5, besides F7, F4 and F6 accounted for one of the largest per-945

centage of failures (34.84%). For the latter, this may indicate that despite that

“many computations where one might be tempted to use side-effects can be more

safely and efficiently expressed without side-effects” [5], in practice, this is either

not the case or more developer education is necessary to avoid side-effects when

using streams. This motivates future work in refactoring stream code to avoid950

side-effects if possible. Section 6 discusses future work to mitigate F7 and F5.

Imprecision is also a possibility as we are bound by the conservativeness of

the underlying ModRef analysis provided by WALA. To investigate, we manu-

ally examined 45 side-effect failures and found 11 false positives. Several sub-

ject developers, on the other hand, confirmed correct refactorings, as discussed955

in section 4.2.6. As for the former, a manual inspection of these sites may be

necessary to confirm that ordering indeed must be preserved. If not, develop-
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ers can rewrite the code (e.g., changing forEachOrdered() to forEach()) to

exploit more parallelism opportunities.

The average speedup of 1.55 obtained from htm.java (benchmarks 10–11)960

most likely reflects the parallelism opportunities available in computationally

intensive programs [57]. Benchmarks 1–6, which had good speedups as well,

also mainly deal with data. Benchmark 7 had the smallest speedup at 1.03.

The problem is that the refactored code appears in areas that “will not benefit

from parallelism” [58], demonstrating a limitation of our approach that is rooted965

in its problem scope. Specifically, our tool locates sites where stream client code

is safe to refactor and is possibly optimizable based on language semantics but

does not assess optimizability based on input size/overhead trade-offs.

4.2.6. Pull Request Study

To assess our approach’s usability, we also submitted several pull requests970

(patches) containing the results of our tool to the subject projects. Assessing

the usefulness of our approach through pull requests, although insightful, has

its challenges for program transformation. Particularly, it has been shown that

developers cannot always estimate the impact of a transformation [59]. Further-

more, developers generally perceive refactorings and other transformations as a975

fault-prone activity [60–62]. As such, developers may not accurately decipher

the value of the presented transformations immediately. Still, we performed this

assessment but only as a part of the overall evaluation.

As of this writing, eight requests were made, with three pending (e.g., [56])

and five rejected. One rejected request [58] is discussed in section 4.2.5. Others980

(e.g., [55]) confirmed a correct refactoring but only wanted parallel streams when

performance is an observed problem. Although three of the requests are still

pending, at least one of them has had ongoing discussions.

4.3. Threats to Validity

The subjects may not represent the stream client code usage. To mitigate985

this, subjects were chosen from diverse domains as well as sizes, as well as
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those used in previous studies (e.g., [63,64]). Although java-design-patterns is

artificial, it is a reference implementation similar to that of JHotDraw, which

has been studied extensively (e.g., [65]).

Entry points may not be correct, which would affect which streams are990

deemed as candidates, as well as the performance assessment as there is a trade-

off between scalability and number of entry points. Standard entry points were

chosen (see section 4.2), representing a super set of practically true entry points.

For the performance test (see table 6), the loads may not be representative of

real-world usage. However, we conferred with developers regarding this when995

possible [56]. For the performance tests we manually generated from unit tests,

a systematic approach to the generation was taken using the same parameters

(N) on both the original and refactored versions.

The focus of our approach is on client code, i.e., our analysis is agnostic to a

particular stream API implementation so as long as it upholds the API specifi-1000

cations. Particular stream API implementations, however, may be fined-tuned

to particular platforms (e.g., server vs. application, GPUs [66,67]). As such, de-

velopers must manually consider the context in which their streams will execute

and the particular stream API implementation they are using, especially if they

need fine-grained performance tuning. In general, developers should consider1005

several factors when deciding on a stream execution mode, including execu-

tion context, workload, and spliterator and collector performance [52, Ch. 6.2].

Although Java is a portable language, future work consists of incorporating

more developer input as to the expected factors governing the execution of the

code into the refactoring algorithm in order to make more informed decisions in1010

transforming stream execution modes automatically.

5. Related Work

Automatic parallelization can occur on several levels, including the com-

piler [68,69], run time [70], and source [19]. The general problem of full auto-

matic parallelization by compilers is extremely complex and remains a grand1015
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challenge [71]. Many attempt to solve it in only certain contexts, e.g., for divide

and conquer [72], recursive functions [73], distributed architectures [74], graph-

ics processing [75], matrix manipulation [76], asking the developer for assis-

tance [77], and speculative strategies [78]. Our approach focuses on MapReduce-

style code over native data containers in a shared memory space using a main-1020

stream programming languages, which may be more amenable to parallelization

due to more explicit data dependencies [18]. Moreover, our approach can help

detect when it is not advantageous to run code in parallel, and when unordering

streams can possibly improve performance.

Techniques other than ours enhance the performance of streams as well.1025

Hayashi et al. [66] develop a supervised machine-learning approach for building

performance heuristics for mapping Java applications onto CPU/GPU acceler-

ators via analyzing parallel streams. Ishizaki et al. [67] translate λ-expressions

in parallel streams into GPU code and automatically generates run time calls

that handle low-level operations. While all these approaches aim to improve1030

performance, their input is streams that are already parallel. As such, develop-

ers must still manually identify and transform sequential streams. Nonetheless,

these approaches may be used in conjunction with ours. Khatchadourian et al.

[29] focus on the use of streams by studying their amenability to paralleliza-

tion in particular contexts, the kinds operations invoked on streams, and bugs1035

specific and tangential to using streams.

Harrison [79] develops an interprocedural analysis and automatic paral-

lelization of Scheme programs. While Scheme is a multi-paradigm language,

and shared memory is modeled, their transformations are more invasive and

imperative-focused, involving such transformations as eliminating recursion and1040

loop fusion. Nicolay et al. [80] have a similar aim but are focused on analyzing

side-effects, whereas we analyze ordering constraints.

Many approaches use streams for other tasks or enhance streams in some

way. Cheon et al. [81] use streams for JML specifications. Biboudis et al. [1]

develop “extensible” pipelines that allow stream APIs to be extended without1045

changing library code. Stein et al. [82] use a type-based approach that statically
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ensures the thread-safety of streams that access UI threads. Other languages,

e.g., Scala [2], JavaScript [3], C# [4], also offer streaming APIs. While we

focus on Java 8 streams, the concepts set forth here may be applicable to other

situations, especially those involving statically-typed languages, and is a topic1050

for future work.

Other approaches refactor programs to either utilize or enhance modern

construct usage. Gyori et al. [18] refactor Java code to use λ-expressions instead

of imperative-style loops. Tsantalis et al. [83] transform clones to λ-expressions.

Khatchadourian and Masuhara [84] refactor skeletal implementations to default1055

methods. Tip et al. [85] use type constraints to refactor class hierarchies, and

Gravley and Lakhotia [86] and Khatchadourian [87] refactor programs to use

enumerated types.

Typestate has been used to solve many problems. Mishne et al. [88] use

typestate for code search over partial programs. Garcia et al. [89] integrate1060

typestate as a first-class citizen in a programming language. Padovani [90]

extends typestate oriented programming (TSOP) for concurrent programming.

Other approaches have also used hybrid typestate analyses. Bodden [91], for

instance, combines typestate with residual monitors to signal property violations

at run time, while Garcia et al. [89] also make use of run time checks via gradual1065

typing [90].

6. Conclusion & Future Work

Our automated refactoring approach “intelligently” optimizes Java 8 stream

code. It automatically deems when it is safe and possibly advantageous to

run stream code either sequentially or in parallel and unorder streams. The1070

approach was implemented as an Eclipse plug-in and evaluated on 18 open

source programs, where 116 of 419 candidate streams (27.68%) were refactored.

A performance analysis indicated an average speedup of 3.49.

In the future, we plan to handle several issues between Eclipse and WALA

models, i.e., to consistently map SSA instructions to AST nodes. One insight1075
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is that a machine learning model can be trained to accurately match an SSA

instruction with a corresponding AST node but only for cases, e.g., anony-

mous inner classes, where the lookup failures using our currently heuristics. We

also plan to incorporate more kinds of (complex) reductions like those involv-

ing maps, details of which have been published in an accompanying technical1080

report [92]. Implementation challenges here deal with extending the ordering

inference approach to deal with so-called “embedded” collections, e.g., Maps may

have multiple orderings, that of the map entries themselves and that of the value

in the case that it is also a collection.

Other plans include examining approximations to combat the problems set1085

forth by Chen et al. [22], perhaps using a conservative data-flow analysis to track

λ-expressions involved in reductions. Approximating stateful intermediate oper-

ations and whether reduction ordering matters may also involve heuristics, e.g.,

dealing with the underlying stream framework code or analysis of API documen-

tation. We will also explore applicability to other streaming frameworks and1090

languages. Furthermore, we will explore how the generalized typestate analysis

presented in section 3 can more broadly apply to other fluent APIs [93, Ch. 4.1].

There is a possibility that the refactored code, as a result of the imposed

transformation, can be further optimized to reduce redundant and unnecessary

code to improve comprehension and maintainability. For example, in listing 10b,1095

both the if and else branches contain exactly the same code. As such, the

conditional statements can be eliminated, leaving behind a single “then” por-

tion. Consequently, the parameter x is also unneeded. We intend to explore the

application of composite refactorings (e.g., Remove Duplicate Code, Re-

move Unused Parameter), perhaps by applying the techniques of Fontana1100

et al. [94], in the future to further improve the refactored code.
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