A Tool for Optimizing Java 8 Stream Software via
Automated Refactoring

Raffi Khatchadourian
City University of New York (CUNY) Hunter College
raffi.khatchadourian @hunter.cuny.edu

Mehdi Bagherzadeh
Oakland University
mbagherzadeh @oakland.edu

Abstract—Streaming APIs are pervasive in mainstream
Object-Oriented languages and platforms. For example, the
Java 8 Stream API allows for functional-like, MapReduce-style
operations in processing both finite, e.g., collections, and infinite
data structures. However, using this API efficiently involves
subtle considerations like determining when it is best for stream
operations to run in parallel, when running operations in parallel
can actually be less efficient, and when it is safe to run in parallel
due to possible lambda expression side-effects. In this paper, we
describe the engineering aspects of an open source automated
refactoring tool called OPTIMIZE STREAMS that assists
developers in writing optimal stream software in a semantics-
preserving fashion. Based on a novel ordering and typestate
analysis, the tool is implemented as a plug-in to the popular
Eclipse IDE, using both the WALA and SAFE frameworks.
The tool was evaluated on 11 Java projects consisting of ~642
thousand lines of code, where we found that 36.31% of candidate
streams we refactorable, and an average speedup of 1.55 on a
performance suite was observed. We also describe experiences
gained from integrating three very different static analysis
frameworks to provide developers with an easy-to-use interface
for optimizing their stream code to its full potential.

Index Terms—refactoring, automatic parallelization, typestate
analysis, ordering, Java 8, streams, eclipse, WALA, SAFE

I. INTRODUCTION

Streaming APIs are widely-available in today’s mainstream,
Object-Oriented programming languages and platforms [1],
including Scala [2], JavaScript [3], C# [4], Java [5], and
Android [6]. They incorporate MapReduce-like [7] operations
on native data structures like collections. MapReduce abstracts
away much of the complexity of writing parallel programs by
facilitating big data processing on multiple nodes using succinct
functional-like programming constructs. It is a popular program-
ming paradigm for writing a certain class of parallel programs,
making writing parallel code in these languages easier. Particu-
larly, such streaming APIs can make writing parallel programs
less error-prone by allowing developers to avoid possible data
races, thread interference and/or contention, and other problems
commonly associated with parallel programs [8]. For example,
as illustrated in fig. 1, Java 8 streams can execute in parallel
simply by adding parallel () call to the operation pipeline.

However, MapReduce traditionally runs in a highly-
distributed environment in the absence of shared memory. On

Yiming Tang
City University of New York (CUNY) Graduate Center
ytang3 @ gradcenter.cuny.edu

Syed Ahmed
Oakland University
sfahmed @oakland.edu

the other hand, Java 8 stream, for example, typically execute
on a single node under multiple threads or cores in a shared
memory space. In this case, because collections reside on the
local machine’s memory, issues may arise from the close ties
between shared memory and the operations. Thus, developers
must manually determine whether running stream code in
parallel results in an efficient yet interference-free program [9],
ensuring that no operations on different threads interleave [10].

Though there are many benefits [11, Ch. 1] to using streams,
efficient stream computation necessitates some careful thought,
such as determining whether executing streams in parallel
is more optimal than running it sequentially due to potential
side-effects, buffering, etc. Passing stateful expressions to
stream operations may also be problematic as the results of
such expressions may depend on state that may change, which
can undermine performance. These problems may not be
immediately evident to developers, possibly requiring complex
interprocedural analysis, understanding the particulars of stream
implementations, and knowing which API to use in the best
situations. Manual analysis and/or refactoring, i.e., semantics-
preserving, source-to-source transformation, for optimal
stream code can be overwhelming and error- (developers
may mistakenly alter or misuse code), and omission-prone
(developers may miss refactoring opportunities).

In fact, during ongoing experiments based on our previous
work [9], we found 157 total streams across 11 open source
subject projects with a 34 subject maximum, which can
increase over time with a rise in stream popularity. Also,
the number of operations issued per stream may be many;
we found that there were 4.14 operations per stream on
average. This warrants manual determination and compacting
of operation insertion locations when manually optimizing
streams. Lastly, (manual) interprocedural and type hierarchy
analysis may be needed to discover ways to use streams in a
particular context. Permutating through operation combinations
and subsequently assessing performance, for which dedicated
performance tests may be absent, can be burdensome.

In this paper, we report on the design and implementation of
a fully-automated refactoring tool named OPTIMIZE STREAMS
that transforms Java 8 stream code for improved performance.



Optimize Streams (%]

The following changes are necessary to perform the refactoring.

Changes to be performed

=i

O -

e

-xample1.java - StreamMotivatingExam

PaperExample1.java

Original Source
22
23 // sort widgets by weight.

PO 4 2 & &
Refactored Source
22
23 // sort widgets by weight.

[24 List<Widget> sortedWidgets = unorderedWidgets.stream().sorted(Compa\j—[

25 .collect(Collectors.tolList());

26

27 // an "ordered" collection of widgets.

28 Collection<Widget> orderedWidgets = new ArraylList<>();
29 // pooulate the collection ...

24 List<Widget> sortedWidgets = unorderedWidgets.parallelStream().so| .
25 .collect(Collectors.tolList());

26

27 // an "ordered" collection of widgets.

28 Collection<Widget> orderedWidgets = new ArraylList<>();

29 // nooulate the collection ...

< Back Cancel Finish

Fig. 1: Screenshot of the OPTIMIZE JAVA 8 STREAM REFACTORING preview wizard.

The tool is used in assessing our ongoing work [9] but is
also publicly available an open source Eclipse (http://eclipse.
org) plug-in (available at http://git.io/vpTLKk) built atop of the
Java Development Tools (JDT) (http://eclip.se/ed) refactoring
infrastructure [12] with a fully-functional Ul, preview pane,
and unit tests. The approach at the tool’s foundation is based on
a novel ordering analysis, which infers when maintaining the
order of a data sequence in a particular expression is necessary
for semantics preservation, and typestate analysis [13], [14],
which augments the type system with “state” and has been
traditionally used for preventing resource usage errors (e.g.,
trying to read from a closed file, not closing a socket prior
to program termination). Our tool uses typestate, along with
interprocedurally analyzing relationships between types, to
identify stream usages that can possibly execute more efficiently
in parallel and which, in fact, can be hindered by parallelism. It
also discovers possible side-effects in A-expressions, i.e., units
of computation to be executed in a deferred fashion, to safely
transform streams to either execute sequentially or in parallel.
To the best of our knowledge, OPTIMIZE STREAMS is the
first tool to integrate automated refactoring with typestate
analysis. It uses both the WALA static analysis framework
(http://wala.sf.net) and the SAFE typestate analysis engine
(http://git.io/vxwBs). Integrating such complex static analyses
is an engineering challenge as these analyses normally involve
an instruction-based Intermediate Representation (IR), while
refactorings work on Abstract Syntax Trees (ASTs) to facilitate
source-to-source transformation. It is convenient for such anal-
yses to operate on instruction-based IR as they can be encoded
in a way that simplifies the analysis (e.g., Static Single Assign-
ment; SSA [15]). However, since refactorings involve source-to-
source transformations, it is convenient to work directly on the
AST. Relating complex static analysis results to the original IR
is an engineering challenge of this work, and we discuss our
experiences in integrating typestate into our refactoring tool.
The ongoing evaluation currently involves studying our
plug-in’s performance on 11 Java projects of varying size
and domain with a total of ~642 thousand lines of code. In

this paper, we discuss the engineering challenges faced in the
study, as well as those faced in compiling our data set [16].
We make the following specific contributions:

Implementation and motivation details. Our tool’s novel
engineering aspects are detailed with a focus on its
integration of typestate analysis, instruction-based IR
static analysis, and abstract syntax-based analysis. Also,
architecture, API usage, data representations, algorithms,
implementation issues, and a more comprehensive
motivation are outlined.

Real-world study engineering. To ensure real-world
applicability, our tool enabled the study of 11 Java
programs that use streams, where we found that 36.31%
of candidate streams we refactorable, with an observed
average speedup of 1.55 during performance testing.
Engineering challenges faced in this large-scale study,
the experiences gained in developing this contribution,
and user feedback is described.

II. MOTIVATION

In this section, use cases that have motivated the existence
of our tool are portrayed. Using a simplified example,
we highlight some of the challenges associated with the
automated analysis and refactoring of Java 8 streams for
greater parallelism and/or increased efficiency.

Listing 1 portrays code that uses the Java 8 Stream API
to process collections of Widgets with weights. Listing la
shows the original version, while Listing 1b is the improved
(but semantically equivalent) version as a result of our
refactoring tool. In listing la, a Collection of Widgets is
declared (line 1) and instantiated (line 1) that does not maintain
element ordering as HashSet does not support it [17]. Note
that ordering is dependent on the run time type (HashSet)
rather than the compile-time type (Collection).

A stream, i.e., a data source view representing an
element sequence supporting MapReduce-style operations,
of unorderedWidgets is created on line 4 via the
stream () method as invoked on the collection. It is a


http://eclipse.org
http://eclipse.org
http://git.io/vpTLk
http://eclip.se/ed
http://wala.sf.net
http://git.io/vxwBs

Listing 1 Snippet of Widget collection processing using Java 8 streams based on [5], [9].

(a) Stream code snippet prior to refactoring.

Collection<Widget> unorderediWidgets = new HashSet<>();

1

2

List<Widget> sortedWidgets = unorderedWidgets 3
.stream() 4
.sorted(Comparator.comparing (Widget: :getWeight)) 5
.collect (Collectors.toList()); 6

7

Collection<Widget> orderedWidgets = new ArrayList<>(); 8

Set<Double> distinctWeightSet = orderedWidgets 11

.stream() .parallel() 12
.map (Widget::getWeight) .distinct () 13
.collect (Collectors.toCollection (TreeSet: :new)); 14
15

16

Set<Color> distinctColorSet = orderedWidgets 17
.parallelStream() .map (Widget::getColor) 18
.distinct () 19
.collect (HashSet: :new, Set::add, Set::addall); 20
21

22

Pattern pattern = Pattern.compile(". [a-2]1"); 23
ArrayList<String> results = new ArrayList<>(); 24
orderedWidgets.stream() .map(w => w.getColor()) 25
.map(c => c.toString()) 26
.filter (s => pattern.matcher(s).matches()) 27
.forEach(s => results.add(s)); 28

(b) Improved stream code via refactoring.

Collection<Widget> unorderedWidgets = new HashSet<>();

List<Widget> sortedWidgets = unorderedWidgets
.streamfparallelStream()
.sorted(Comparator.comparing(Widget: :getWeight))
.collect(Collectors.tolList());

Collection<Widget> orderedWidgets = new ArrayList<>();

Set<Double> distinctWeightSet = orderedWidgets
.stream() .paratieti
.map (Widget::getWeight) .distinct ()
.collect (Collectors.toCollection(TreeSet: :new));

Set<Color> distinctColorSet = orderedWidgets
.parallelStream() .map(Widget::getColor)
.unordered () .distinct ()

.collect (HashSet::new, Set::add, Set::addAll);

Pattern pattern = Pattern.compile(". [a=z]");
ArrayList<String> results = new ArrayList<>();
orderedWidgets.stream() .map(w => w.getColor())
.map(c => c.toString())
.filter (s => pattern.matcher (s) .matches())
.forEach(s => results.add(s));

sequential stream, meaning the operations will execute
serially due to the particular API called. Streams may also
be associated with an encounter order, i.e., is the order the
elements will be visited by the operations. The encounter
order is derived from the steam ordered attribute, which can
be dependent on whether the stream’s source supports ordering
of its elements. For example, the stream on line 4 will be
unordered since it’s source (line 1) HashSets are unordered.
As such, the order in which may stream operations traverse
the elements is nondeterministic, a characteristic that can have
significant impact on efficient parallel computation.

On line 5, elements of the stream are sorted () by the
corresponding intermediate operation, the result of which is
a (possibly) new stream with the encounter order rearranged
accordingly. The operation has an optional parameter, namely,
a Comparator, dictating the sorting criteria. In this case,
Widgets are to be sorted by their weight in non-decreasing
order. The syntax Widget::getWeight is a method
reference denoting the method that should be used for the
comparison. Intermediate operations like sorted () have
their execution deferred, i.e., they are “lazily” executed, are
deferred until a so-called terminal operation is executed like
collect () (line 6). This is a special kind of (mutable)
reduction, aggregating results of prior intermediate operations

into a given Collector, in this case, one that yields a List.

The combination of the stream data source, any (queued)
intermediate operations, and a terminal operation such as
collect () form a stream pipeline. This execution of this
pipeline results in a List of Widgets sorted by weight.

It may be possible to increase performance by running this
stream’s pipeline in parallel. Listing 1b, line 4 displays the
corresponding refactoring with the stream pipeline execution

in parallel (removed code is strack-threugh, while the added
code is underlined). Note, however, that had the stream been
ordered, running the pipeline in parallel may actually result
in worse performance due to the multiple passes and/or data
buffering required by so-called stateful intermediate operations
(SIOs) like sorted (). Because the stream is unordered, the
mutable reduction can be done more efficiently [5].

A distinct widget weight Set is created on lines 11-14.
Unlike the previous example, this reduction already takes place
in parallel due to the corresponding call at line 12. Note
though that there is a possible performance degradation here as
the SIO distinct may require multiple passes, the compu-
tation takes place in parallel, and the stream it operates on is
ordered as dictated by its source (i.e., orderedWidgets is
an instance of an ArrayList). Keeping the parallel computa-
tion but unordering the stream may improve performance, but
we would need to determine whether doing so is safe. In other
words, we would need to know whether it is safe to unorder
the stream prior to invoking the distinct () operation. To
determine this automatically without developer input can be
difficult, however. Furthermore, it can be error-prone if done
manually, especially on large and complex projects.

Our insight includes that by analyzing the type of the
resulting reduction, we may be able to determine if unordering
a stream is safe. In this case, it is a (mutable) reduction
(i.e., collect () operation on line 14) to a Set, of which
subclasses that do not preserve ordering exist. If we could
determine that the resulting Set is one of the unordered
Sets, unordering the stream would be safe since such an
operation would not preserve ordering. The type of the
resulting Set returned by collect (), though, is determined
by the passed Collector, in this case, the return value



of Collectors.toCollection (TreeSet: :new).1

Unfortunately, since TreeSets preserve ordering, we must
keep the stream ordered. Here, to improve performance, it
may be advantageous to run this pipeline, perhaps surprisingly,
sequentially, the transformation of which takes place on
line 12 of listing 1b. Note that removing parallel () is not
the only option; it can also be replaced with sequential (),
but, doing so would be redundant since stream () returns
a stream that is already sequential.

In contrast, lines 17-20 map, in parallel, each Widget to its
Color, filter those that are distinct, and collect them
into a Set. To portray a variety of ways mutable reductions
can occur, a more direct form of collect () is used rather
than a Collector, and the collection is to a HashSet,
which does not maintain element ordering. As such, and unlike
the previous example, though the stream is originally ordered,
since the (mutable) reduction is to an unordered destination,
we can infer that the stream can be safely unordered to
improve performance. Thus, line 19 in listing 1b shows the
inserted call to unordered () immediately prior to the
distinct () operation call. This allows distinct () to
work more efficiently under parallel computation [5].

Lastly, on lines 23-28, Widget colors matching a regular
expression are sequentially collected into an ArrayList.
The code proceeds by mapping each widget to its Color,
each Color to its String representation, filtering matching
strings, and forEach, adding them to the resulting
ArrayList via the behavioral parameter (\-expression)
s—>results.add (s). The stream is not refactored to par-
allel because of the side-effects produced by the A-expression.
If executed in parallel, the unsynchronized ArrayList
could cause incorrect results due to thread scheduling, altering
original program semantics. Adding synchronization to the
ArrayList would solve that problem but cause thread
contention, undermining the benefit of parallelism [5].2

While the above example has been simplified, manual
analysis of stream code can be complex, especially in
large programs, necessitating a thorough understanding of
API intricacies as seen in listing 1, possible alias analysis,
knowledge of type ordering attributes, etc. Henceforth, it would
be extremely valuable to developers if automation is available
to assist them in writing their stream code. In the following
sections, we discuss detail the engineering of our tool to
automatically assist developers to refactor their streaming code
to take full advantage of comprehensive streaming APIs.

III. IMPLEMENTATION

The OPTIMIZE STREAMS refactoring tool, available at
http://git.io/vpTLk, is implemented as an open-source Eclipse
IDE plug-in and built upon WALA and SAFE. Eclipse is
leveraged for its existing, well-documented, and well-integrated
refactoring framework and test engine [12], including static

ITreeSet : :new is a method reference to the TreeSet default ctor.
2Fixing this problem could also involve refactoring forEach () to a
mutable reduction but is currently outside the scope of our tool.

analysis and transformation APIs (e.g., ASTRewrite), refac-
toring preview pane (as shown in fig. 1), precondition checking
(e.g., Refactoring.checkInitialConditions (),
Refactoring.checkFinalPreconditions ()), and
refactoring testing (e.g., RefactoringTest). It serves as a
front-end to our refactoring, and due to plug-ins such as m2e
(http://eclip.se/eb) and Buildship (http://eclip.se/3T), it may be
utilized by any project that takes advantage of popular build
systems like Maven and Gradle. What is more is that Eclipse
is completely open source for all Java development (see
http://jetbrains.com/idea/#choose YourEdition) thus possibly
impacting more Java developers. For the initial entry point
into the tool, as well as the transformation portion, Eclipse
ASTs with source symbol bindings are used as an IR.

A. Architecture and Dependencies

WALA is used for static analyses such as side-effect
analysis (ModRef), and SAFE, which depends on WALA,
for its typestate analysis, which is depicted in fig. 2. The
right-hand side of fig. 2 portrays the internal architecture
of OPTIMIZE STREAMS, while the left-hand side depicts its
external dependencies. The internal architecture, for the most
part, follows in line with that described in Khatchadourian
and Masuhara [18]. It is listed here for self-containment, but
further details are not included. However, the relationship
between the internal plug-in architecture and that of the
external dependencies are described more fully here.

1) Entry Points Selection: As shown in fig. 2, the
core internal plug-ins consist of edu.cuny.hunter.
streamrefactoring.core and core.analysis. The
former is mainly responsible for dealing with the Eclipse ASTs,
however, it does use WALA to process entry points and relate
them to the call graph produced by WALA. Our tool accepts two
kinds of entry points, explicit and implicit. Explicit entry points
can be specified by the developer using annotations found in our
accompanying annotation library. Developers may also elect,
via a wizard option, to have our tool automatically discover
different kinds of ‘“standard” entry points, including main
methods, JUnit test cases, and microbenchmarking methods
(JMH). Our tool unions explicit and implicit entry points.

2) Static Analysis Integration: The core.analysis
package is mainly responsible for bridging the Eclipse
representation with that of the results of the static analysis
employed by WALA and SAFE. This includes using the com. |
ibm.wala.ide.util.JavaEclipseProjectPath to
properly initiate the analysis path used by WALA to perform
the SSA transformation. Some changes were necessary to
this class in order to support refactoring test suites, including
dealing with artificial JDK classes (e.g., rtstubs. jar).

A call graph is built using WALA, which is needed for
interprocedural type inference (using pointer analysis) for
determining stream source types, the ModRef analysis for
discovering possible A-expression side-effects, and the typestate
analysis, for determining stream state, e.g., parallel, unordered.
Our tool uses a k-CFA call graph construction algorithm,
as stream client code is the focus of the analysis. The k


http://git.io/vpTLk
http://eclip.se/eb
http://eclip.se/3T
http://jetbrains.com/idea/#chooseYourEdition

e

WALA / ; ) :
Internal Plug-ins User Facing Plug-ins
Icomibm,wala.ssa
/l iedu.cun .hunter.streamrefactoring.core.anal sisU edu.cuny.hunter.streamrefactoring.ui
|wwmp_h I) X x
\ T ~ Iedu.cun .hunter.streamrefactoring.core
| f edu.cuny.hunter.streamrefactoring.eval
SAFE
/l Iedu.cun .hunter.streamrefactoring.tests
—1 com.ibm.safe.typestate |) K [
L
| com.ibm.safe.rules
) Eclipse Framework Plug-ins
\ org.eclipse.jdt.ui ﬂ org.eclipse.jdt.core
Objenesis
Igg@jenesls Ij org.eclipse.Itk.core.refactoring U org.eclipse. jdt.ui.tests.refactoring D
Iggﬂ:jenesns.instantiator U
J

Fig. 2: Architecture and dependency diagram.

parameter is input to our tool (with k=2 being the default as
it is the minimum & value to consider client-code) for methods
returning streams and k=1 elsewhere (for tractability). SAFE
also utilizes the call graph, as depicted in fig. 2.

3) Stream Ordering Analysis: While WALA is used to
approximate possible stream source types (e.g., types of collec-
tions for which streams derived), reflection is used to determine
the type’s “ordering” attribute. Doing so is possible as a type’s
ordering does not typically change throughout the lifetime of
the associated object. Built-in reflection mechanisms are used to
reflectively instantiate the type and retrieve its ordering charac-
teristics by calling the characteristics () method on an
associated stream’s Spliterator. When types have no-arg
constructors, Objenesis (http://objenesis.org), a tool normally
used for Mock Objects, is used to bypass constructor calls.

B. Relating Intermediate Representations

As previously discussed, for the refactoring portion, we
utilize Eclipse ASTs as an IR, while the WALA-based static
analysis consumes instruction-based IR in SSA form. Our
tool maps the different IRs when necessary, e.g., to identify
transformation locations and to utilize generic information,
which is only available at the source (AST) level due to type
erasure, to improve the precision of the type analysis. To
relate SSA-based IR to Eclipse ASTs, a combination of line
number (retrieved via an option in WALA and available in
Eclipse AST bindings) and method signatures is used.

C. Typestate Analysis Integration

Note that each intermediate operation may result in a new
stream instance being created. SAFE tracks the state of in-
stances using a unique identifier representing the approximated

object instance at run time. This identifier is correlated with
signatures in the call string. Call strings are available due to the
k-CFA call graph construction algorithm. The call string entry
is then related to a corresponding object creation instruction
in the SSA, which in turn is mapped to the corresponding
AST node in the manner mentioned in section III-B.

Typestate analysis is traditionally used to validate complete
sequences of methods called on objects. Traditionally, this
ensures that objects are not in a nonsensical state when
particular methods are called on them and that no resources
have been leaked (e.g., a missing call to close () on a file).
In our case, however, we are interested in determining stream
at the point of the reduction, i.e., when a terminal operation
is called, which may not represent the end of the program.
In our implementation, this required “dissecting” the internal
details of the SAFE analysis engine and extracting state
details at the appropriate times. This is mainly enabled by the
com.ibm.safe.Factoid type, which relates individual
object instances to state at a particular instruction.

SAFE was originally designed to be used by developers as
end-users and not for programmatic consumption as is the case
with OPTIMIZE STREAMS. In other words, SAFE requires
developers to specify automata to be used in the typestate
analysis. It is comprehensive with many options that are entered
in text-based configuration files. As such, some engineering
challenges involving utilizing SAFE in a programmatic fashion
including building APIs to create automata were necessary.

IV. EVALUATION ENGINEERING CHALLENGES

While our study is currently in progress, details of which may
be found on our project website (http://cuny.is/streams), here,
we highlight some of the empirical findings of our tool, as well


http://objenesis.org
http://cuny.is/streams

as discuss the engineering challenges faced in its assessment.
OPTIMIZE STREAMS was applied to 11 Java programs of vary-
ing size and domain that use Java 8 streams. In these projects,
our tool was able to refactor 36.31% of candidate streams it
encountered despite its conservative nature. We proceeded to
assess the impact of our tool by comparing the results of perfor-
mance tests before and after the refactoring. Performance tests,
in particular, microbenchmarks, are highly desirable for this
kind of assessment as there are many factors that can externally
influence the efficiency of parallel programs. Microbenchmark-
ing tests, like those written on the Java Microbenchmarking
Harness (JMH), offer various important features in this domain
including process isolation, warm-up routines, etc. Moreover,
to truly benefit from parallelism, programs must process an
amount of data over a particular epsilon, i.e., the point in which
the overhead of running in parallel meets the performance of
serial execution. As such, true performance tests must typically
process large data sets so that parallelism can be exhibited.

Despite the benefits of microbenchmarking, however, of the
11 projects studied, only one, htm. java, included a proper
JMH test suite. Even though this open source project went
above and beyond to include such a test suite, the amount
of data being processed by the test suite was minimal. By
direction of the project developers [19], we expanded the
amount of data and were able to observe an average speedup
of 1.55. This is particularly encouraging as it matches the
speedup observed by a similar manual refactoring by Naftalin
[20, Ch. 6]. We also received encouraging positive feedback
from developers after submitting a patch including the
refactoring as a pull request to the project. The authors were
even invited to join the project as regular contributors, but
we are still awaiting the results of the pull request.

In the absence of true performance tests, which seemed to be
rare in the open source projects we explored, regular JUnit tests
were used to obtain more performance metrics. Though these
tests are not true indicators of performance due to the lack of
process isolation, data set size, etc., we were at least able to es-
tablish that, under such conditions, our refactoring, on average,
did not produce worse performance than the original. To help
mitigate the absence of performance tests in this situation, we
ran entire test suites up to 100 times and averaged the result,
with the hope of eliminating some of the warmup factors. How-
ever, data set size in this scenario was not controlled and most
likely small as unit tests normally execute upon each commit
and need to be fast. The sheer number of unit tests in our subject
projects was too large to individually increase data set sizes.

Another engineering challenge encountered was specifying
entry points for a large project corpus, many of which were
frameworks. This eventually lead to the automatic discovery
of common entry points feature discussed in section III-Al.

V. CONCLUSION & FUTURE WORK

We have described the engineering aspects of an automated
refactoring tool called OPTIMIZE STREAMS that assists
developers with writing optimal Java 8 Stream code. It is open
source and widely available to Java developers as an Eclipse

plug-in. OPTIMIZE STREAMS integrates an Eclipse refactoring
with the advanced static analyses offered by WALA and SAFE.
11 Java projects totaling ~642 thousands of lines of code were
used in the tools assessment, engineering challenges faced by
the evaluation were discussed, and a speedup of 1.55 on the
refactored code was observed. Several options for customizing
the behavior of the tool are available to developers.

In the future, we plan to handle more advanced ways of
relating ASTs to SSA-based IR, as well as incorporate more
kinds of (complex) reductions like those involving maps.
We also plan to explore applicability to other streaming
APIs/languages and explore the possibility of refactoring side-
effect producing code so that it is amenable to our refactoring.

REFERENCES

[11 A. Biboudis, N. Palladinos, G. Fourtounis, and Y. Smaragdakis,
“Streams a la carte: Extensible pipelines with object algebras,” in
ECOOP, 2015, pp. 591-613. por: 10.4230/LIPIcs. ECOOP.2015.591.

[2] EPFL. (2017). Collections—mutable and immutable collections, [Online].
Available: https://www.scala-lang.org/api/2.12.3/scala/collection.

[3] Refsnes Data. (2015). JavaScript array map() method, [Online]. Avail-
able: https://www.w3schools.com/jsref/jsref_map.asp.

[4] Microsoft. (2018). LINQ: .NET language integrated query, [Online].
Available: http://msdn.microsoft.com/en-us/library/bb308959.aspx.

[5] Oracle. (2017). java.util.stream, [Online]. Available: http://docs.oracle.
com/javase/9/docs/api/java/util/stream/package-summary.html.

[6] J. Lau. (2017). Future of Java 8 language feature support on Android,
[Online]. Available: http://android-developers.googleblog.com/2017/03/
future-of-java-8-language-feature.html.

[71 J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107-113, 2008. DOTI:
10.1145/1327452.1327492.

[81 S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A
comprehensive study on real world concurrency bug characteristics,” in
ASPLOS, ACM, 2008, pp. 329-339. poI: 10.1145/1346281.1346323.

[9]1 Y. Tang, R. Khatchadourian, M. Bagherzadeh, and S. Ahmed, “Poster:
Towards safe refactoring for intelligent parallelization of java 8 streams,”

in ICSE Companion, 2018. DOI: 10.1145/3183440.3195098.

Oracle. (2017). Thread interference, [Online]. Available: http://docs.

oracle.com/javase/tutorial/essential/concurrency/interfere.html.

R. Warburton, Java 8 Lambdas: Pragmatic Functional Programming.

O’Reilly Media, Apr. 7, 2014.

D. Béiumer, E. Gamma, and A. Kiezun, “Integrating refactoring support

into a java development tool,” Oct. 2001, [Online]. Available: http:

/Ipeople.csail.mit.edu/akiezun/companion.pdf.

R. E. Strom and S. Yemini, “Typestate: A programming language

concept for enhancing software reliability,” IEEE TSE, vol. SE-12,

no. 1, pp. 157-171, Jan. 1986. DOI: 10.1109/tse.1986.6312929.

S. J. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay, “Effective

typestate verification in the presence of aliasing,” ACM TOSEM, vol. 17,

no. 2, pp. 91-934, May 2008. poI: 10.1145/1348250.1348255.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Global value numbers

and redundant computations,” in POPL, ACM SIGPLAN-SIGACT,

ACM, 1988, pp. 12-27. poI: 10.1145/73560.73562.

R. Khatchadourian, Y. Tang, M. Bagherzadeh, and S. Ahmed, Raw

results for the Optimize Java 8 Stream refactoring evaluation, Apr.

2018. por: 10.5281/zenodo.1219882.

Oracle. (2017). HashSet (Java SE 9) & JDK 9, [Online]. Available:

http://docs.oracle.com/javase/9/docs/api/java/util/HashSet.html.

R. Khatchadourian and H. Masuhara, “Defaultification refactoring: A

tool for automatically converting Java methods to default,” in ASE, Oct.

2017, pp. 984-989. por: 10.1109/ASE.2017.8115716.

D. Ray. (2018). Pull request 539, [Online]. Available: http://github.

com/numenta/htm.java/pull/539#issuecomment-375146963.

M. Naftalin, Mastering Lambdas: Java Programming in a Multicore

World, 1st ed. McGraw-Hill, Sep. 11, 2014.

[10]
(11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]


http://github.com/numenta/htm.java
https://doi.org/10.4230/LIPIcs.ECOOP.2015.591
https://www.scala-lang.org/api/2.12.3/scala/collection
https://www.w3schools.com/jsref/jsref_map.asp
http://msdn.microsoft.com/en-us/library/bb308959.aspx
http://docs.oracle.com/javase/9/docs/api/java/util/stream/package-summary.html
http://docs.oracle.com/javase/9/docs/api/java/util/stream/package-summary.html
http://android-developers.googleblog.com/2017/03/future-of-java-8-language-feature.html
http://android-developers.googleblog.com/2017/03/future-of-java-8-language-feature.html
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/3183440.3195098
http://docs.oracle.com/javase/tutorial/essential/concurrency/interfere.html
http://docs.oracle.com/javase/tutorial/essential/concurrency/interfere.html
http://people.csail.mit.edu/akiezun/companion.pdf
http://people.csail.mit.edu/akiezun/companion.pdf
https://doi.org/10.1109/tse.1986.6312929
https://doi.org/10.1145/1348250.1348255
https://doi.org/10.1145/73560.73562
https://doi.org/10.5281/zenodo.1219882
http://docs.oracle.com/javase/9/docs/api/java/util/HashSet.html
https://doi.org/10.1109/ASE.2017.8115716
http://github.com/numenta/htm.java/pull/539#issuecomment-375146963
http://github.com/numenta/htm.java/pull/539#issuecomment-375146963

	Introduction
	Motivation
	Implementation
	Architecture and Dependencies
	Entry Points Selection
	Static Analysis Integration
	Stream Ordering Analysis

	Relating Intermediate Representations
	Typestate Analysis Integration

	Evaluation Engineering Challenges
	Conclusion & Future Work

